首次体验Pytorch,本文参考于:github and PyTorch 中文网人脸相似度对比

本文主要熟悉Pytorch大致流程,修改了读取数据部分。没有采用原作者的ImageFolder方法:   ImageFolder(root, transform=None, target_transform=None, loader=default_loader)。而是采用了一种更自由的方法,利用了DatasetDataLoader 自由实现,更加适合于不同数据的预处理导入工作。

Siamese网络不用多说,就是两个共享参数的CNN。每次的输入是一对图像+1个label,共3个值。注意label=0或1(又称正负样本),表示输入的两张图片match(匹配、同一个人)或no-match(不匹配、非同一人)。 下图是Siamese基本结构,图是其他论文随便找的,输入看做两张图片就好。只不过下图是两个光普段而已。

1. 数据处理

数据采用的是AT&T人脸数据。共40个人,每个人有10张脸。数据下载:AT&T

首先解压后发现文件夹下共40个文件夹,每个文件夹里有10张pgm图片。这里生成一个包含图片路径的train.txt文件共后续调用:

def convert(train=True):
if(train):
f=open(Config.txt_root, 'w')
data_path=root+'/train/'
if(not os.path.exists(data_path)):
os.makedirs(data_path)
for i in range(40):
for j in range(10):
img_path = data_path+'s'+str(i+1)+'/'+str(j+1)+'.pgm'
f.write(img_path+' '+str(i)+'\n')
f.close()

生成结果:每行前面为每张图片的完整路径, 后面数字为类别标签0~39。train文件夹下为s1~s40共40个子文件夹。

              

2.   定制个性化数据集

这一步骤主要继承了类Dataset,然后重写getitem和len方法即可:

class MyDataset(Dataset):    # 集成Dataset类以定制

      def __init__(self, txt, transform=None, target_transform=None, should_invert=False):

            self.transform = transform
self.target_transform = target_transform
self.should_invert = should_invert
self.txt = txt # 之前生成的train.txt def __getitem__(self, index): line = linecache.getline(self.txt, random.randint(1, self.__len__())) # 随机选择一个人脸
line.strip('\n')
img0_list= line.split()
should_get_same_class = random.randint(0,1) # 随机数0或1,是否选择同一个人的脸,这里为了保证尽量使匹配和非匹配数据大致平衡(正负类样本相当)
if should_get_same_class: # 执行的话就挑一张同一个人的脸作为匹配样本对
while True:
img1_list = linecache.getline(self.txt, random.randint(1, self.__len__())).strip('\n').split()
if img0_list[1]==img1_list[1]:
break
else: # else就是随意挑一个人的脸作为非匹配样本对,当然也可能抽到同一个人的脸,概率较小而已
img1_list = linecache.getline(self.txt, random.randint(1,self.__len__())).strip('\n').split() img0 = Image.open(img0_list[0]) # img_list都是大小为2的列表,list[0]为图像, list[1]为label
img1 = Image.open(img1_list[0])
img0 = img0.convert("L") # 转为灰度
img1 = img1.convert("L") if self.should_invert: # 是否进行像素反转操作,即0变1,1变0
img0 = PIL.ImageOps.invert(img0)
img1 = PIL.ImageOps.invert(img1) if self.transform is not None: # 非常方便的transform操作,在实例化时可以进行任意定制
img0 = self.transform(img0)
img1 = self.transform(img1) return img0, img1 , torch.from_numpy(np.array([int(img1_list[1]!=img0_list[1])],dtype=np.float32)) # 注意一定要返回数据+标签, 这里返回一对图像+label(应由numpy转为tensor) def __len__(self): # 数据总长
fh = open(self.txt, 'r')
num = len(fh.readlines())
fh.close()
return num

3.  制作双塔CNN

class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.cnn1 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(1, 4, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(4),
nn.Dropout2d(p=.2), nn.ReflectionPad2d(1),
nn.Conv2d(4, 8, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(8),
nn.Dropout2d(p=.2), nn.ReflectionPad2d(1),
nn.Conv2d(8, 8, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(8),
nn.Dropout2d(p=.2),
) self.fc1 = nn.Sequential(
nn.Linear(8*100*100, 500),
nn.ReLU(inplace=True), nn.Linear(500, 500),
nn.ReLU(inplace=True), nn.Linear(500, 5)
) def forward_once(self, x):
output = self.cnn1(x)
output = output.view(output.size()[0], -1)
output = self.fc1(output)
return output def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
return output1, output2

很简单,没说的,注意前向传播是两张图同时输入进行。

4.  定制对比损失函数

# Custom Contrastive Loss
class ContrastiveLoss(torch.nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
""" def __init__(self, margin=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) + # calmp夹断用法
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) return loss_contrastive

上面的损失函数为自己制作的,公式源于lecun文章:

Loss =

DW=   

m为容忍度, Dw为两张图片的欧氏距离。

5. 训练一波

train_data = MyDataset(txt = Config.txt_root,transform=transforms.Compose(
[transforms.Resize((100,100)),transforms.ToTensor()]), should_invert=False) #Resize到100,100
train_dataloader = DataLoader(dataset=train_data, shuffle=True, num_workers=2, batch_size = Config.train_batch_size) net = SiameseNetwork().cuda() # GPU加速
criterion = ContrastiveLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0005) counter = []
loss_history =[]
iteration_number =0 for epoch in range(0, Config.train_number_epochs):
for i, data in enumerate(train_dataloader, 0):
img0, img1, label = data
img0, img1, label = Variable(img0).cuda(), Variable(img1).cuda(), Variable(label).cuda()
output1, output2 = net(img0, img1)
optimizer.zero_grad()
loss_contrastive = criterion(output1, output2, label)
loss_contrastive.backward()
optimizer.step() if i%10 == 0:
print("Epoch:{}, Current loss {}\n".format(epoch,loss_contrastive.data[0]))
iteration_number += 10
counter.append(iteration_number)
loss_history.append(loss_contrastive.data[0])
show_plot(counter, loss_history) # plot 损失函数变化曲线

损失函数结果图:

                  

batch_size=32, epoches=20, lr=0.001                                                       batch_size=32, epoches=30, lr=0.0005

全部代码:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 24 10:00:24 2018
Paper: Siamese Neural Networks for One-shot Image Recognition
links: https://www.cnblogs.com/denny402/p/7520063.html
"""
import torch
from torch.autograd import Variable
import os
import random
import linecache
import numpy as np
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import PIL.ImageOps
import matplotlib.pyplot as plt class Config():
root = '/home/lps/Spyder/data_faces/'
txt_root = '/home/lps/Spyder/data_faces/train.txt'
train_batch_size = 32
train_number_epochs = 30 # Helper functions
def imshow(img,text=None,should_save=False):
npimg = img.numpy()
plt.axis("off")
if text:
plt.text(75, 8, text, style='italic',fontweight='bold',
bbox={'facecolor':'white', 'alpha':0.8, 'pad':10})
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show() def show_plot(iteration,loss):
plt.plot(iteration,loss)
plt.show() def convert(train=True):
if(train):
f=open(Config.txt_root, 'w')
data_path=root+'/train/'
if(not os.path.exists(data_path)):
os.makedirs(data_path)
for i in range(40):
for j in range(10):
img_path = data_path+'s'+str(i+1)+'/'+str(j+1)+'.pgm'
f.write(img_path+' '+str(i)+'\n')
f.close() #convert(True) # ready the dataset, Not use ImageFolder as the author did
class MyDataset(Dataset): def __init__(self, txt, transform=None, target_transform=None, should_invert=False): self.transform = transform
self.target_transform = target_transform
self.should_invert = should_invert
self.txt = txt def __getitem__(self, index): line = linecache.getline(self.txt, random.randint(1, self.__len__()))
line.strip('\n')
img0_list= line.split()
should_get_same_class = random.randint(0,1)
if should_get_same_class:
while True:
img1_list = linecache.getline(self.txt, random.randint(1, self.__len__())).strip('\n').split()
if img0_list[1]==img1_list[1]:
break
else:
img1_list = linecache.getline(self.txt, random.randint(1,self.__len__())).strip('\n').split() img0 = Image.open(img0_list[0])
img1 = Image.open(img1_list[0])
img0 = img0.convert("L")
img1 = img1.convert("L") if self.should_invert:
img0 = PIL.ImageOps.invert(img0)
img1 = PIL.ImageOps.invert(img1) if self.transform is not None:
img0 = self.transform(img0)
img1 = self.transform(img1) return img0, img1 , torch.from_numpy(np.array([int(img1_list[1]!=img0_list[1])],dtype=np.float32)) def __len__(self):
fh = open(self.txt, 'r')
num = len(fh.readlines())
fh.close()
return num # Visualising some of the data
"""
train_data=MyDataset(txt = Config.txt_root, transform=transforms.ToTensor(),
transform=transforms.Compose([transforms.Scale((100,100)),
transforms.ToTensor()], should_invert=False))
train_loader = DataLoader(dataset=train_data, batch_size=8, shuffle=True)
#it = iter(train_loader)
p1, p2, label = it.next()
example_batch = it.next()
concatenated = torch.cat((example_batch[0],example_batch[1]),0)
imshow(torchvision.utils.make_grid(concatenated))
print(example_batch[2].numpy())
""" # Neural Net Definition, Standard CNNs
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.cnn1 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(1, 4, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(4),
nn.Dropout2d(p=.2), nn.ReflectionPad2d(1),
nn.Conv2d(4, 8, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(8),
nn.Dropout2d(p=.2), nn.ReflectionPad2d(1),
nn.Conv2d(8, 8, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(8),
nn.Dropout2d(p=.2),
) self.fc1 = nn.Sequential(
nn.Linear(8*100*100, 500),
nn.ReLU(inplace=True), nn.Linear(500, 500),
nn.ReLU(inplace=True), nn.Linear(500, 5)
) def forward_once(self, x):
output = self.cnn1(x)
output = output.view(output.size()[0], -1)
output = self.fc1(output)
return output def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
return output1, output2 # Custom Contrastive Loss
class ContrastiveLoss(torch.nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
""" def __init__(self, margin=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) return loss_contrastive # Training
train_data = MyDataset(txt = Config.txt_root,transform=transforms.Compose(
[transforms.Resize((100,100)),transforms.ToTensor()]), should_invert=False)
train_dataloader = DataLoader(dataset=train_data, shuffle=True, num_workers=2, batch_size = Config.train_batch_size) net = SiameseNetwork().cuda()
criterion = ContrastiveLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0005) counter = []
loss_history =[]
iteration_number =0 for epoch in range(0, Config.train_number_epochs):
for i, data in enumerate(train_dataloader, 0):
img0, img1, label = data
img0, img1, label = Variable(img0).cuda(), Variable(img1).cuda(), Variable(label).cuda()
output1, output2 = net(img0, img1)
optimizer.zero_grad()
loss_contrastive = criterion(output1, output2, label)
loss_contrastive.backward()
optimizer.step() if i%10 == 0:
print("Epoch:{}, Current loss {}\n".format(epoch,loss_contrastive.data[0]))
iteration_number += 10
counter.append(iteration_number)
loss_history.append(loss_contrastive.data[0])
show_plot(counter, loss_history)

Total codes

原作者jupyter notebook下载:Siamese Neural Networks for One-shot Image Recognition

更多资料:Some important Pytorch tasks

利用Siamese network 来解决 one-shot learninghttps://sorenbouma.github.io/blog/oneshot/    译文: 【深度神经网络 One-shot Learning】孪生网络少样本精准分类

A PyTorch Implementation of "Siamese Neural Networks for One-shot Image Recognition"

Pytorch 入门之Siamese网络的更多相关文章

  1. Pytorch入门随手记

    Pytorch入门随手记 什么是Pytorch? Pytorch是Torch到Python上的移植(Torch原本是用Lua语言编写的) 是一个动态的过程,数据和图是一起建立的. tensor.dot ...

  2. pytorch 入门指南

    两类深度学习框架的优缺点 动态图(PyTorch) 计算图的进行与代码的运行时同时进行的. 静态图(Tensorflow <2.0) 自建命名体系 自建时序控制 难以介入 使用深度学习框架的优点 ...

  3. 超简单!pytorch入门教程(五):训练和测试CNN

    我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一 ...

  4. pytorch入门2.2构建回归模型初体验(开始训练)

    pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...

  5. pytorch入门2.1构建回归模型初体验(模型构建)

    pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...

  6. Pytorch入门——手把手教你MNIST手写数字识别

    MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...

  7. Pytorch入门上 —— Dataset、Tensorboard、Transforms、Dataloader

    本节内容参照小土堆的pytorch入门视频教程.学习时建议多读源码,通过源码中的注释可以快速弄清楚类或函数的作用以及输入输出类型. Dataset 借用Dataset可以快速访问深度学习需要的数据,例 ...

  8. Pytorch入门下 —— 其他

    本节内容参照小土堆的pytorch入门视频教程. 现有模型使用和修改 pytorch框架提供了很多现有模型,其中torchvision.models包中有很多关于视觉(图像)领域的模型,如下图: 下面 ...

  9. pytorch写一个LeNet网络

    我们先介绍下pytorch中的cnn网络 学过深度卷积网络的应该都非常熟悉这张demo图(LeNet): 先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进 ...

随机推荐

  1. 【题解】 bzoj2006: [NOI2010]超级钢琴 (ST表+贪心)

    题面戳我 Solution 不会,看的题解 Attention 哇痛苦,一直不会打\(ST\)表,我是真的菜啊qwq 预处理 Log[1]=0;two[0]=1; for(int i=2;i<= ...

  2. 自学Linux Shell13.3-获得用户输入(read命令)

    Bash shell提供了一些不同的方法来从用户处获得数据,包括以下3中方法: 命令行参数(添加在名利后面的数据) 命令行选项(可修改命令行为的单个字母)主要getopt.getopts命令 直接从键 ...

  3. Kubernetes Ingress管理

    目录 Ingress介绍 1.Pod漂移问题 2.端口管理问题 3.域名分配及动态更新问题 Nginx Ingress配置 1.部署默认后端 2.部署Ingress Controller 3.部署In ...

  4. ARP协议原理学习

    一.ARP的作用. 首先在window 的命令行中输入arp -a即可查看本机的arp缓存表.主机要发送数据包时,需要填充目的IP及其IP地址对应的MAC.当我们只有目的IP地址时,如何得到其对应的M ...

  5. Windows安装nginx服务

    1.测试版本 nginx版本:nginx-1.10.2:windows版本:win10 2.下载winsw. 当前最新版本为:winsw-2.0.1-bin.exe.下载地址:http://repo. ...

  6. mysql命令备份和还原

    1.导出整个数据库 mysqldump -u用户名 -p密码  数据库名 > 导出的文件名  C:\Users\jack> mysqldump -uroot -pmysql sva_rec ...

  7. Kafka记录-常用命令选项说明

    1.kafka-topics  主题 如:kafka-topics --create --zookeeper 10.0.4.142:2181/kafka --replication-factor 1 ...

  8. POJ No.3255 Roadblocks 求次短路径

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  9. 地图上道路编号中的G S X Y

    地图上道路中的G S X Y Z C D,分别表示什么道? 国道 省道 县道 乡道 专用道路 村道 D: 还没有搞明白

  10. C#复杂类型序列化

    [Serializable] public class CardItemInfo { private int lineWidth;//线宽 private CardItemInfo childCard ...