PCA原理解释(二)
PCA在做数据处理,一般会有一个数据预处理,其中一个目标就是将取数据特征向相关性。
为什么要去特征的相关性?
因为数据如果有相关性,在学习的时候是冗余的,徒增学习成本;所以对于数据处理(也称之为白化,英文有的时候称之为sphering),白化的目的:1.实现特征之间的相关性较低;2.所有的特征具有相同的方差。
怎么去特征相关性,就是让他们的协方差为0,协方差,顾名思义,就是两组变量的协同性,如果两个变量的变化趋势是一致的,某个变量范围内,取值同样趋于增大、减少,这个时候,协方差就是正常,如果变化趋势相反,协方差就是正直;那么如果两个变量(函数)的变化趋势无关,协方差取值是0.
如果:E(X)=m,E(Y)=v,协方差公式如下:
cov(X,Y) = E((X-m)(Y-v)) = E(X*Y) - mv
如果E(X)和E(Y)两者独立,则协方差为0,这是因为:
E(X*Y) = E(X)E(Y) = mv
这里在深入讲一下,什么是期望?在学习概率的时候,前面几章都是在讲述分布(正态分布,0,1分布,T分布),分布讲述的数据的规律,期望讲述的一个值,用一个数来代表你的这些数集,这个就是期望,也称之为均值,我们看一下期望的公式:


你就会发现其实无论是离散的概率还是连续的期望都是计算求全平均,这就印证上面说的:找一个数来代表你的这个分布;在numpy的array里面有一个mean函数,就是计算期望的。
讲到期望,就要说一下中心化(centered),所谓中心化就是列之间的期望为0。或者说PCA认为各个点都是以原点为中心来进行分散的。
SVD:奇异值分解,Singular Value Decomposition.
他的思路就是将一个矩阵(无论多复杂)用三个矩阵相乘得来:

其中M就是原始矩阵,U是M.dot(M.T)的特征向量,V是M.T.dot(M)的向量,Sigma就是一个对角矩阵。里面的元素就是奇异值。
关于矩阵乘法和特征值
矩阵的乘法(dot)本质其实是将一个矩阵中的向量从长度(伸缩)到方向(旋转)进行转变;如果一个M.dot(N),只是有伸缩但是没有旋转,那么这个N就是M的特征向量。
那么回归本源,什么是特征值,特征向量?
对于矩阵A,如果存在数m以及向量x,满足Ax=mx,则成m为A的特征值,x是矩阵A对于m特征值的特征向量。
PCA中的核函数
很多时候,降维是为了减少数据量,提高运算速度;但是有的时候低维度的数据不好对数据进行划分,这个时候需要将数据提高维度,很多时候,高纬度数据反而更好找到super plane来对数据进行划分,那么核函数就是做这件事情的,通过提高维度来进行数据划分,将底维数据向高维数据做映射的函数,就是"核函数(kernel function)"。在sklearn里面就有KernelPCA用于为PCA指定核函数。
提到了PCA一定要提一下无偏估计。因为PCA的有一部分就是就协方差的。

方差嘛,本来应该是[X-E(X)]**2,但是主要,你现在出列都是矩阵,所以如果想要实现平方,是需要和他的转置矩阵相乘来处理的。
参考:
关于SVD很硬的一篇博客
https://www.cnblogs.com/lzllovesyl/p/5243370.html
PCA原理解释(二)的更多相关文章
- PCA原理解释
上图讲述的两组数据,可以看到左图的数据离散度比较大,相关性比较弱,右图数据的相关性比较强:我们在使用PCA的时候,就是要将相关性强的数据进行降维,以减少处理的数据量. 那么怎么描述数据的相关性呢? ...
- PCA原理与实践
在对数据进行预处理时,我们经常会遇到数据的维数非常之大,如果不进行相应的特征处理,那么算法的资源开销会很大,这在很多场景下是我们不能接受的.而对于数据的若干维度之间往往会存在较大的相关性,如果能将数据 ...
- Kernel PCA 原理和演示
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的 ...
- 主成分分析(PCA)原理与实现
主成分分析原理与实现 主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从 ...
- 降维算法----PCA原理推导
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1 ...
- 深入源码分析SpringMVC底层原理(二)
原文链接:深入源码分析SpringMVC底层原理(二) 文章目录 深入分析SpringMVC请求处理过程 1. DispatcherServlet处理请求 1.1 寻找Handler 1.2 没有找到 ...
- JVM 内部原理(二)— 基本概念之字节码
JVM 内部原理(二)- 基本概念之字节码 介绍 版本:Java SE 7 每位使用 Java 的程序员都知道 Java 字节码在 Java 运行时(JRE - Java Runtime Enviro ...
- Objective-C中,ARC下的 strong和weak指针原理解释
Objective-C中,ARC下的 strong和weak指针原理解释 提示:本文中所说的"实例变量"即是"成员变量","局部变量"即是& ...
- 机器学习之主成分分析PCA原理笔记
1. 相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的 ...
随机推荐
- 使用lets encrypt获取免费ssl证书
lets encrypt也是一个CA,并且在众多大厂的加持下有可能成为最棒的免费颁发证书的CA,尤其是chrome的加入. 目前https已经成为了一种趋势,无奈证书授权费用相当昂贵,将一大批企业挡在 ...
- wx小程序用canvas生成图片流程与注意事项
1.需要画入canvas的 图片都需要先缓存到本地 let ps = [] ps.push(that.loadImageFun(this.statusInfo.avatar_url, "he ...
- diary of laravel
1. 修改数据库连接 初始化数据库: 首先: 修改 config- database.php 中的 数据库链接 其次:修改 .env 中数据库链接 创建表: php artisan migr ...
- L2-001. 紧急救援(最短路的变形)*
L2-001. 紧急救援 #include <cstdio> #include <algorithm> using namespace std; ; int const INF ...
- 性能测试-11.Linux服务器使用NMON监控指标
一.NMON使用 首先下载nmon软件http://nmon.sourceforge.net/pmwiki.php?n=Site.Download,打开这个网站下载符合自己操作系统的硬件的相关nmon ...
- Fatal error: Call to undefined function mb_strlen()
php配置的时候出现:Fatal error: Call to undefined function mb_strlen() 表示php不能加载mbstring模块,在php 的配置文件php.in ...
- maven修改本地仓库,远程仓库与中央仓库
什么是Maven仓库 在不用Maven的时候,比如说以前我们用Ant构建项目,在项目目录下,往往会看到一个名为/lib的子目录,那里存放着各类第三方依赖jar文件,如 log4j.jar,junit. ...
- python基于并发与socket实现远程文件传输程序
FTP程序 Client: * bin/start.py 程序入口 * conf/配置文件存放 * core/ * auth.py 登陆,注册以及上传下载查看当前文件夹下文件以及删除功能存放 * cl ...
- httpd: config error '*.php:/usr/bin/php-cgi' in '/etc/httpd.conf'
/********************************************************************************* * httpd: config e ...
- EmBitz1.11中将左边的目录弄出来
在view→manager 然后就会出来