题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\)

题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还有一个问题是欧拉降幂公式,

\(a^{b}mod c=a^{b mod\phi(c)+\phi(c)}mod c(a>c)\)

需要改写快速幂

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=(ans*a>=c?ans*a%c+c:ans*a);a=(a*a>=c?a*a%c+c:a*a),b>>=1;}return ans;} using namespace std; const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=100000+10,inf=0x3f3f3f3f; ll eu(ll n)
{
ll ans=n;
for(ll i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)n/=i;
}
}
if(n!=1)ans=ans/n*(n-1);
return ans;
}
ll a[N],b[40];
int main()
{
int n;ll m;
scanf("%d%lld",&n,&m);
b[0]=m;
for(int i=1;i<=35;i++)b[i]=eu(b[i-1]);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
int q;scanf("%d",&q);
while(q--)
{
int l,r;scanf("%d%d",&l,&r);
if(r-l+1>30)r=l+30;
ll ans=1;
for(int i=r,j=r-l;i>=l;i--,j--)
{
ans=qp(a[i],ans,b[j]);
// printf("%d %lld %lld\n",i,b[j],ans);
}
printf("%lld\n",ans%b[0]);
}
return 0;
}
/********************
2 18
2 2
1
1 2
********************/

D - Power Tower欧拉降幂公式的更多相关文章

  1. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  2. Applese涂颜色-欧拉降幂公式

    链接:https://ac.nowcoder.com/acm/contest/330/E来源:牛客网 题目描述 精通程序设计的 Applese 叕写了一个游戏. 在这个游戏中,有一个 n 行 m 列的 ...

  3. bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

    欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...

  4. HDU4704(SummerTrainingDay04-A 欧拉降幂公式)

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  5. 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]

    题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...

  6. 牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板

    链接:https://www.nowcoder.com/acm/contest/181/F来源:牛客网 题目描述 给出一个长度为n的序列,你需要计算出所有长度为k的子序列中,除最大最小数之外所有数的乘 ...

  7. 欧拉降幂公式 Super A^B mod C

    Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=100000 ...

  8. HDU4704:Sum(欧拉降幂公式)

    Input 2 Output 2 Sample Input 2 由公式,ans=2^(N-1)%Mod=2^((N-1)%(Mod-1)+(Mod-1)) %Mod. 注意:降幂的之后再加一个Mod- ...

  9. FZU1759(SummerTrainingDay04-B 欧拉降幂公式)

    Problem 1759 Super A^B mod C Accept: 1056    Submit: 3444Time Limit: 1000 mSec    Memory Limit : 327 ...

随机推荐

  1. P2221 [HAOI2012]高速公路

    思路 考虑每一条边的贡献,然后推式子 \[ \begin{align}&\sum_{i}V_i\times(R-i+1)\times(i-L+1)\\=&\sum_{i}V_i\lef ...

  2. P2153 [SDOI2009]晨跑

    思路 典型的最小费用最大流问题,拆点,每个点对应的入点和出点之间连一条cap=1的边表示只能经过一次的限制条件 然后其他边从u的出点连向v的入点即可 代码 #include <cstdio> ...

  3. HDU 5649 DZY Loves Sorting(二分答案+线段树/线段树合并+线段树分割)

    题意 一个 \(1\) 到 \(n\) 的全排列,\(m\) 种操作,每次将一段区间 \([l,r]\) 按升序或降序排列,求 \(m\) 次操作后的第 \(k\) 位. \(1 \leq n \le ...

  4. 17秋 SDN课程 第一次上机作业

    第一题 拓扑: 测试连通性: 第二题 拓扑: 测试连通性: 第三题 拓扑: 测试连通性:

  5. C语言 分割字符串

    对指针的操作有点迷糊 只好采用下面一些比较low的手段 char str[100]; char delims[] = ";"; char *result = NULL; sprin ...

  6. Python学习笔记3-string

    More on Modules and their Namespaces Suppose you've got a module "binky.py" which contains ...

  7. React入门实例:组件化+react-redux实现网上商城(1)

    项目运行 1.git clone https://github.com/soybeanxiaobi/React_demo_onlineShop 2.cd React_demo_onlineShop(文 ...

  8. CSS--外发光与内阴影

    外阴影:box-shadow: X轴  Y轴  Rpx  color; 属性说明(顺序依次对应): 阴影的X轴(可以使用负值)    阴影的Y轴(可以使用负值)    阴影模糊值(大小)    阴影的 ...

  9. 恢复Intellij idea删除的文件

    恢复Intellij idea的删除文件方法: 右键单机项目名称---->Local History---->Show History 可以看到历史操作记录,右键单机想要恢复的文件---- ...

  10. Java Virtual Machine(Java虚拟机)

    JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的. Java语言 ...