numpy 中的 broadcasting 理解
broadcast 是 numpy 中 array 的一个重要操作。
首先,broadcast 只适用于加减。
然后,broadcast 执行的时候,如果两个 array 的 shape 不一样,会先给“短”的那一个,增加高维度“扩展”(broadcasting),比如,一个 2 维的 array,可以是一个 3 维 size 为 1 的 3维 array。
类似于: shape(1,3,2) = shape(3,2)
最后,比较两个 array(扩展后的),按照 dimension 从低到高,比较每一个维度的 size 是否满足下面两个条件之一:
1. 相等
2. 其中一个为 1
所以,举例,下列 array 是否可以进行 broadcast:
1. shape(4, 3) 与 shape(3,) :shape(3) 可以 broadcast 为 shape(1, 3),那么,从低到高: d0(3 === 3), d1(其中一个为 1)。结论,可以,结果的为 shape(4, 3)
2. shape(6,5,4,3, 与 shape(5, 4, 3):shape(5, 4, 3) 可以 broadcast 为 shape(1,5,4,3),那么,从低到高:d0( 3 === 3), d1(4 === 4), d2(5===5),d3(其中一个为 1)。结论,可以,结果为 shape(6, 5, 4, 3)。
3. shape(2,3) 与 shape(5,4,3):shape(2,3) 可以 broadcast 为 shape(1, 2, 3),那么,从低到高:d0( 3 == 3), d1(4!=2)。结论,不能进行 broadcast。
4. shape(4,1) 与 shape(5):shape(5)可以 broadcast 为 shape(1,5),那么,从低到高: d0( 其中一个为 1), d1(其中一个为 1)。结论,可以进行 broadcast,结果为 shape(4, 5) 。
broadcast 之后的运算是怎样呢?举例说明:
a = [ [0,1,2,], [4,5,6,] ] b = [1,2,3,] a + b = [ [1,3,5,], [5,7,9,] ]
或可自己运行下面代码观察
import numpy as np a = np.arange(12)
b = a.reshape(3,2,2) c = np.arange(4)
d = c.reshape(2, 2) e = np.arange(2) print d+b print e+b
还有下面一种特殊情况,即扩展低维度为 1 的情况下:
import numpy as np a = np.arange(3) b = np.arange(5) a = a[:, np.newaxis] print a
print b print a+b
基本上是只在对应的 dimension 进行加减,扩展的部分不参与运算。
numpy 中的 broadcasting 理解的更多相关文章
- 对numpy中shape的理解
from:http://blog.csdn.net/by_study/article/details/67633593 环境:Windows, Python3.5 一维情况: >>> ...
- [开发技巧]·Numpy中对axis的理解与应用
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针 ...
- 关于NumPy中数组轴的理解
参考原文链接(英文版):https://www.sharpsightlabs.com/blog/numpy-axes-explained/:中文版:https://www.jianshu.com/p/ ...
- 理解numpy中ndarray的内存布局和设计哲学
目录 ndarray是什么 ndarray的设计哲学 ndarray的内存布局 为什么可以这样设计 小结 参考 博客:博客园 | CSDN | blog 本文的主要目的在于理解numpy.ndarra ...
- Numpy中的广播机制,数组的广播机制(Broadcasting)
这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...
- Numpy中Meshgrid函数介绍及2种应用场景
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法 ...
- Python Pandas与Numpy中axis参数的二义性
Stackoverflow.com是程序员的好去处,本公众号将以pandas为主题,开始一个系列,争取做到每周一篇,翻译并帮助pandas学习者一起理解一些有代表性的案例.今天的主题就是Pandas与 ...
- Python numpy 中常用的数据运算
Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计 ...
- numpy中array数组对象的储存方式(n,1)和(n,)的区别
资料:https://stackoverflow.com/questions/22053050/difference-between-numpy-array-shape-r-1-and-r 这篇文章是 ...
随机推荐
- 安装ipython和jupyter
本节内容: 安装ipython 安装jupyter Pycharm介绍 Python软件包管理 一.安装ipython 1. python的交互式环境 2. 安装ipython 可以使用pip命令 ...
- Hibernate之一级缓存和二级缓存
1:Hibernate的一级缓存: 1.1:使用一级缓存的目的是为了减少对数据库的访问次数,从而提升hibernate的执行效率:(当执行一次查询操作的时候,执行第二次查询操作,先检查缓存中是否有数据 ...
- springbank 开发日志 Spring启动过程中对自定义标签的处理
这篇随笔的许多知识来源于:http://www.importnew.com/19391.html 之所以会去看这些东东,主要是希望能够模仿spring mvc的处理流程,做出一套合理的交易处理流程. ...
- P2502 [HAOI2006]旅行 并查集
题目描述 Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也 ...
- java爬虫抓取腾讯漫画评论
package com.eteclab.wodm.utils; import java.io.BufferedWriter; import java.io.File; import java.io.F ...
- ARIMA模型---时间序列分析---温度预测
(图片来自百度) 数据 分析数据第一步还是套路------画图 数据看上去比较平整,但是由于数据太对看不出具体情况,于是将只取前300个数据再此画图 这数据看上去很不错,感觉有隐藏周期的意思 代码 # ...
- hdu 1686 Oulipo 【KMP】(计算模式串匹配的次数——与已匹配的字串可以有交集)
题目链接:https://vjudge.net/contest/220679#problem/B 题目大意: 输入一个T,表示有T组测试数据: 每组测试数据包括一个字符串W,T,T长度大于W小于100 ...
- caffe 利用VGG训练自己的数据
写这个是因为有童鞋在跑VGG的时候遇到各种问题,供参考一下. 网络结构 以VGG16为例,自己跑的细胞数据 solver.prototxt: net: "/media/dl/source/E ...
- Python3 图片水平镜像实现
# -*- coding: utf-8 -*- """ Created on Sun Feb 4 12:15:38 2018 @author: markli " ...
- Scala面向接口
trait Logger{ def log(message:String){ println("Logger:"+message) } } trait RichLogger ext ...