CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录
题目链接
CF868F. Yet Another Minimization Problem
题解
\(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\)
\(w_{l,r}\)为区间\([l,r]\)的花费,1D1D的经典形式
发现这个这是个具有决策单调性的转移
单无法快速转移,我们考虑分治
对于当前分治区间\([l,r]\) ,它的最优决策区间在\([L,R]\)之间。
对于\([l,r]\)的中点\(mid\),我们可以暴力扫\([L−mid]\)
找到mid的最优决策点p。因为决策单调,所以\([l,mid−1]\)最优决策区间为\([L,p]\),而\([mid+1,r]\),的最优决策区间在\([p,R]\)上
分治下去
求解区间:\(|\gets预处理\to | l\frac{\qquad\qquad\qquad\downarrow^{mid}\qquad\qquad\qquad}{}r\)
决策区间:\(L\frac{\qquad\qquad\qquad\downarrow^{p}\qquad\qquad\qquad}{}R\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define gc getchar()
#define pc putchar
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9' )c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f ;
}
void print(LL x) {
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
int n,K;
const int maxn = 200007;
int a[maxn],b[maxn],c[maxn];
LL f[maxn],dp[maxn];
void solve(int l,int r ,int L,int R,int w) {
if(l > r) return ;
int mid = l + r >> 1,k = 0,p = std::min(mid,R);
for(int i = l;i <= mid;++ i) w += c[a[i]] ++;
for(int i = L;i <= p;++ i) {
w -= -- c[a[i]];
if(dp[mid] > f[i] + w) dp[mid] = f[i] + w,k = i;
}
for(int i = L;i <= p;++ i) w += c[a[i]] ++;
for(int i = l;i <= mid;++ i) w -= --c[a[i]];
solve(l,mid - 1,L,k,w);
for(int i = l;i <= mid;++ i) w += c[a[i]] ++;
for(int i = L;i < k;++ i) w -= -- c[a[i]];
solve(mid + 1,r,k,R,w);
for(int i = L;i < k;++ i) ++ c[a[i]];
for(int i = l;i <= mid;++ i) -- c[a[i]];
}
int main() {
n = read(),K = read();
for(int i = 1;i <= n;++ i)
f[i] = f[i - 1] + c[a[i] = read()] ++;
memset(c,0,sizeof c);
for(int i = 1;i <= K;++ i) {
memset(dp,0x3f,sizeof dp);
solve(1,n,1,n,0);
std::swap(f,dp);
}
print(dp[n]);
return 0;
}
CF868 F. Yet Another Minimization Problem 决策单调优化 分治的更多相关文章
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- CF 868 F. Yet Another Minimization Problem
F. Yet Another Minimization Problem http://codeforces.com/contest/868/problem/F 题意: 给定一个长度为n的序列.你需要将 ...
- Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...
- cf868F. Yet Another Minimization Problem(决策单调性 分治dp)
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...
- Newnode's NOI(P?)模拟赛 第二题 dp决策单调优化
其实直接暴力O(n3)DP+O2O(n^3)DP+O_2O(n3)DP+O2优化能过- CODE O(n3)O(n^3)O(n3) 先来个O(n3)O(n^3)O(n3)暴力DP(开了O2O_2O2 ...
- BZOJ 4951 [WF2017]Money for Nothing (决策单调优化DP+分治)
题目大意:略 题目传送门 不愧是$World final$的神题,代码短,思维强度大,细节多到吐..调了足足2h 贪心 我们利用贪心的思想,发现有一些工厂/公司是非常黑心的 以工厂为例,对于一个工厂$ ...
- 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 532 Solved: 337[Submit][Status][ ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
随机推荐
- usbserials
Rerference: http://blog.csdn.net/qwert12131990/article/details/52403034?locationNum=9
- 优秀的gdb图形化前端调试器
目前我自己最喜欢的还是 ddd . gdbgui 和 vim-vebugger插件或vimgdb插件 三种. You could try using Insight a graphical front ...
- MariaDB:在Linux下修改编码
参考网址:http://www.cnblogs.com/vingi/articles/4302330.html: # vi /etc/my.cnf [mysqld] init_connect='SET ...
- Android JAR包、Library项目
[JAR包] android引入JAR包,打包成JAR包,打包成Library项目,导入Library项目 (1)项目导入JAR包:1.在项目目录里建立一个libs目录,将外部jar包拷贝在里面.2. ...
- 一台电脑,两个及多个git账号配置
1. 生成两[三]个ssh公钥私钥 方法参照:http://www.cnblogs.com/fanbi/p/7772812.html第三步骤 假定其中一个是id_rsa, 另一个时id_rsa_two ...
- js实现星级评分效果(非常规5个li代码)
1. 前言 此方案受到JS单行写一个评级组件启发,自己写了一个简单Demo. 功能有正常滑动,动态显示实心星星个数:当点击确认,则保持当前的实心星星个数:再移动时未点击,则离开后还是保持之前的状态. ...
- matplotlib画堆叠条形图
import matplotlib.pyplot as plt%matplotlib inlineplt.style.use('ggplot') plt.style.use("ggplot& ...
- 中文汉字和常见英文数字等的unicode编码范围实例页面
链接: https://www.zhangxinxu.com/study/201611/chinese-language-unicode-range.html
- C#面向对象(继承的重载和构造函数)
构造函数: 继承的重载:
- Flink(二)CentOS7.5搭建Flink1.6.1分布式集群
一. Flink的下载 安装包下载地址:http://flink.apache.org/downloads.html ,选择对应Hadoop的Flink版本下载 [admin@node21 soft ...