CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录
题目链接
CF868F. Yet Another Minimization Problem
题解
\(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\)
\(w_{l,r}\)为区间\([l,r]\)的花费,1D1D的经典形式
发现这个这是个具有决策单调性的转移
单无法快速转移,我们考虑分治
对于当前分治区间\([l,r]\) ,它的最优决策区间在\([L,R]\)之间。
对于\([l,r]\)的中点\(mid\),我们可以暴力扫\([L−mid]\)
找到mid的最优决策点p。因为决策单调,所以\([l,mid−1]\)最优决策区间为\([L,p]\),而\([mid+1,r]\),的最优决策区间在\([p,R]\)上
分治下去
求解区间:\(|\gets预处理\to | l\frac{\qquad\qquad\qquad\downarrow^{mid}\qquad\qquad\qquad}{}r\)
决策区间:\(L\frac{\qquad\qquad\qquad\downarrow^{p}\qquad\qquad\qquad}{}R\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define gc getchar()
#define pc putchar
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9' )c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f ;
}
void print(LL x) {
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
int n,K;
const int maxn = 200007;
int a[maxn],b[maxn],c[maxn];
LL f[maxn],dp[maxn];
void solve(int l,int r ,int L,int R,int w) {
if(l > r) return ;
int mid = l + r >> 1,k = 0,p = std::min(mid,R);
for(int i = l;i <= mid;++ i) w += c[a[i]] ++;
for(int i = L;i <= p;++ i) {
w -= -- c[a[i]];
if(dp[mid] > f[i] + w) dp[mid] = f[i] + w,k = i;
}
for(int i = L;i <= p;++ i) w += c[a[i]] ++;
for(int i = l;i <= mid;++ i) w -= --c[a[i]];
solve(l,mid - 1,L,k,w);
for(int i = l;i <= mid;++ i) w += c[a[i]] ++;
for(int i = L;i < k;++ i) w -= -- c[a[i]];
solve(mid + 1,r,k,R,w);
for(int i = L;i < k;++ i) ++ c[a[i]];
for(int i = l;i <= mid;++ i) -- c[a[i]];
}
int main() {
n = read(),K = read();
for(int i = 1;i <= n;++ i)
f[i] = f[i - 1] + c[a[i] = read()] ++;
memset(c,0,sizeof c);
for(int i = 1;i <= K;++ i) {
memset(dp,0x3f,sizeof dp);
solve(1,n,1,n,0);
std::swap(f,dp);
}
print(dp[n]);
return 0;
}
CF868 F. Yet Another Minimization Problem 决策单调优化 分治的更多相关文章
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- CF 868 F. Yet Another Minimization Problem
F. Yet Another Minimization Problem http://codeforces.com/contest/868/problem/F 题意: 给定一个长度为n的序列.你需要将 ...
- Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...
- cf868F. Yet Another Minimization Problem(决策单调性 分治dp)
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...
- Newnode's NOI(P?)模拟赛 第二题 dp决策单调优化
其实直接暴力O(n3)DP+O2O(n^3)DP+O_2O(n3)DP+O2优化能过- CODE O(n3)O(n^3)O(n3) 先来个O(n3)O(n^3)O(n3)暴力DP(开了O2O_2O2 ...
- BZOJ 4951 [WF2017]Money for Nothing (决策单调优化DP+分治)
题目大意:略 题目传送门 不愧是$World final$的神题,代码短,思维强度大,细节多到吐..调了足足2h 贪心 我们利用贪心的思想,发现有一些工厂/公司是非常黑心的 以工厂为例,对于一个工厂$ ...
- 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 532 Solved: 337[Submit][Status][ ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
随机推荐
- Protues常用元器件查找对应表
原理图常用库文件:Miscellaneous Devices.ddbDallas Microprocessor.ddbIntel Databooks.ddbProtel DOS Schematic L ...
- Dubbo监控中心
(1).dubbo-admin(管理控制台) 1).从https://github.com/apache/incubator-dubbo-ops下载解压 2).修改dubbo-admin配置文件中zo ...
- HDFS安全模式
用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下: enter - 进入安全模式 leave - 强制NameNode离开安全模式 get - 返 ...
- log4j2使用入门(二)——与不同日志框架的适配
在之前博客中已经指出log4j2可以与不同的日志框架进行适配,这里举一些实际应用进行说明: 1.比如我们在项目中使用了log4j2作为日志器,使用了log4j-api2.6.2.jar和log4j-c ...
- DataTables 1.10.x与1.9.x参数名对照表
Datatables 1.10.x在命名上与1.9.x的有区别,新版的使用的是驼峰的命名规则,而之前的是采用匈牙利命名规则 当然,这些变化都是向下兼容的,你可以继续使用旧版本的api方法的参数和名称. ...
- expdp和impdp导入和导出数据
一 关于expdp和impdp 使用EXPDP和IMPDP时应该注意的事项:EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用.EXPDP和IMPDP是服务端的工具程 ...
- [Java]求文件大小并保留两位小数(文件大小是一个长整型数单位是Byte)
前言 为了获得一堆apk的大小,并与人类友好方式显示.本来是打算用以下方法,到时不能具体到保留两位小数. org.apache.commons.io.FileUtils.byteCountToDisp ...
- MVC,MVP和MVVM的区别
MVC 转载标名出处 dub 从这幅图可以看到,我们可以看到在MVC里,View是可以直接访问Model的!从而,View里会包含Model信息,不可避免的还要包括一些业务逻辑. 在MVC模型 ...
- Windows Server 2003 R2标准版 SP2 64位 (简体中文)官方原版ISO镜像
Windows Server 2003 R2标准版 SP2 64位 (简体中文)官方原版ISO镜像迅雷下载 软件简介 Windows Server 2003 R2标准版是继Windows Serv ...
- QA CodeDiff做什么?什么时间做?
一.QA CodeDiff都在做什么 1.防止开发合并代码出错.要不删除了别人的要不删除了自己的,比如代码冲突后简单的选择使用他人或自己: 2.开发夹杂私货,在不通知QA的情况下私自修改bug或增加功 ...