[NOIP2017]逛公园 最短路+拓扑排序+dp
题目描述
给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数。求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 $-1$ 。
输入
第一行包含一个整数 $T$ , 代表数据组数。
接下来 $T$ 组数据,对于每组数据: 第一行包含四个整数 $N,M,K,P$ ,每两个整数之间用一个空格隔开。
接下来 $M$ 行,每行三个整数 $a_i,b_i,c_i$ ,代表编号为 $a_i,b_i$ 的点之间有一条权值为 $c_i$ 的有向边,每两个整数之间用一个空格隔开。
输出
输出文件包含 $T$ 行,每行一个整数表示答案。
样例输入
2
5 7 2 10
1 2 1
2 4 0
4 5 2
2 3 2
3 4 1
3 5 2
1 5 3
2 2 0 10
1 2 0
2 1 0
样例输出
3
-1
题解
最短路+拓扑排序+dp
首先使用堆优化Dijkstra或Spfa(不知道本题是否会卡)求出1到所有点的最短路。
由于对于所有边 $(x,y,z)$ 满足 $dis[x]+z\ge dis[y]$ ,因此超过最短路的部分不会减少。
那么我们设 $f[i][j]$ 表示到达点 $i$ 时经过的路径总长度为 $dis[i]+j\ (j \le k)$ 的方案数。那么这相当于一个新的分层图,只会在同层或向上层转移,不会像下层转移。
这就转化为图上求路径条数。首先初始化 $f[1][0]=0 $ ,跑拓扑排序的同时进行转移。
如果一个点被排到了,那么 $f$ 值即为路径条数。
如果一个点没有被排到,则说明有环连接到它,即路径条数为 $\infty$。
因此把所有 $f[n][0...k]$ 统计一下即可。
时间复杂度 $O(T(m\log n+mk))$
考场上一眼看出题解,然而卡了两个小时的常数才勉强卡进去...
考场原代码(去掉了文件操作):
#include <queue>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
#define M 200010
#define R register
#define pos(x , y) (x + (y) * n)
using namespace std;
typedef pair<int , int> pr;
priority_queue<pr> q;
int head[N] , to[M] , len[M] , next[M] , cnt , dis[N] , vis[N];
int ll[N * 51] , rr[N * 51] , tt[M * 51] , que[N * 51] , ind[N * 51] , f[N * 51];
inline void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
inline char nc()
{
static char buf[100000] , *p1 , *p2;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf , 1 , 100000 , stdin) , p1 == p2) ? EOF : *p1 ++ ;
}
inline int read()
{
int ret = 0; char ch = nc();
while(!isdigit(ch)) ch = nc();
while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = nc();
return ret;
}
int main()
{
int T = read();
while(T -- )
{
memset(head , 0 , sizeof(head));
memset(vis , 0 , sizeof(vis));
memset(ind , 0 , sizeof(ind));
memset(f , 0 , sizeof(f));
cnt = 0;
int n = read() , m = read() , k = read() , z , ans = 0 , flag = 1;
R int p = read() , i , j , x , y , l = 1 , r = 0;
for(i = 1 ; i <= m ; ++i) x = read() , y = read() , z = read() , add(x , y , z);
memset(dis , 0x3f , sizeof(dis));
dis[1] = 0 , q.push(pr(0 , 1));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[to[i]] > dis[x] + len[i])
dis[to[i]] = dis[x] + len[i] , q.push(pr(-dis[to[i]] , to[i]));
}
cnt = 0;
for(x = 1 ; x <= n ; ++x)
{
for(j = 0 ; j <= k ; ++j)
{
ll[pos(x , j)] = cnt + 1;
for(i = head[x] ; i ; i = next[i])
if(j + dis[x] + len[i] - dis[to[i]] <= k)
++ind[tt[++cnt] = pos(to[i] , j + dis[x] + len[i] - dis[to[i]])];
rr[pos(x , j)] = cnt;
}
}
f[1] = 1;
for(x = 1 ; x <= pos(n , k) ; ++x)
if(!ind[x])
que[++r] = x;
while(l <= r)
{
x = que[l ++ ];
for(i = ll[x] ; i <= rr[x] ; ++i)
{
y = tt[i];
f[y] += f[x] , ind[y] -- ;
if(f[y] >= p) f[y] -= p;
if(!ind[y]) que[++r] = y;
}
}
for(i = 0 ; i <= k ; ++i)
{
if(ind[pos(n , i)]) flag = 0;
ans = (ans + f[pos(n , i)]) % p;
}
if(flag) printf("%d\n" , ans);
else puts("-1");
}
return 0;
}
[NOIP2017]逛公园 最短路+拓扑排序+dp的更多相关文章
- [Luogu P3953] 逛公园 (最短路+拓扑排序+DP)
题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易 ...
- 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP
[BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...
- NOIP2017 Day1 T3 逛公园(最短路+拓扑排序+DP)
神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性, ...
- [NOIP2017]逛公园 最短路图 拓扑序DP
---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...
- [NOIP2017] 逛公园 (最短路,动态规划&记忆化搜索)
题目链接 Solution 我只会60分暴力... 正解是 DP. 状态定义: \(f[i][j]\) 代表 \(1\) 到 \(i\) 比最短路长 \(j\) 的方案数. 那么很显然最后答案也就是 ...
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
- 【比赛】NOIP2017 逛公园
考试的时候灵光一闪,瞬间推出DP方程,但是不知道怎么判-1,然后?然后就炸了. 后来发现,我只要把拓扑和DP分开,中间加一个判断,就AC了,可惜. 看这道题,我们首先来想有哪些情况是-1:只要有零环在 ...
- [NOIP2017] 逛公园
[NOIP2017] 逛公园 题目大意: 给定一张图,询问长度 不超过1到n的最短路长度加k 的1到n的路径 有多少条. 数据范围: 点数\(n \le 10^5\) ,边数\(m \le 2*10^ ...
- BZOJ_1916_[Usaco2010 Open]冲浪_分层图+拓扑排序+DP
BZOJ_1916_[Usaco2010 Open]冲浪_分层图+拓扑排序+DP Description 受到秘鲁的马丘比丘的新式水上乐园的启发,Farmer John决定也为奶牛们建 一个水上乐园. ...
随机推荐
- 【Mysql sql inject】【入门篇】sqli-labs使用 part 4【18-20】
这几关的注入点产生位置大多在HTTP头位置处 常见的HTTP注入点产生位置为[Referer].[X-Forwarded-For].[Cookie].[X-Real-IP].[Accept-Langu ...
- 【vim】保存文件没有权限 :w !sudo tee %
每当你打开一个你没有写入权限的文件(比如系统配置文件)并做了一些修改,Vim 无法通过普通的 ":w" 命令来保存. 你不需要重新以 root 方式打开文件再进行修改,只需要运行: ...
- 如何在linux下检测内存泄漏(转)
本文转自:http://www.ibm.com/developerworks/cn/linux/l-mleak/ 本文针对 linux 下的 C++ 程序的内存泄漏的检测方法及其实现进行探讨.其中包括 ...
- mysql中文乱码或提示error
插入一条中文记录: 语句: insert into employee(id,name,job,salary) values(4,'小明','清洁员',1500); 提示: ERROR 1366 (HY ...
- zabbix3.0.4使用shell脚本和zabbix自带模板两种方法添加对指定进程和端口的监控
zabbix3.0.4添加对进程的监控: 方法一:通过自定义命令进行监控 主要思路: 通过 ps -ef|grep sdk-push-1.0.0.jar |grep -v grep|wc -l 这个命 ...
- centos6.5环境自动化运维之puppet实现nginx反向代理功能及puppet安装配置详解
puppet是一种Linux.Unix.windows平台的集中配置管理系统,使用自有的puppet描述语言,可管理配置文件.用户.cron任务.软件包.系统服务等.puppet把这些系统实体称之为资 ...
- CentOS 6.5自动化运维之基于DHCP和TFTP服务的PXE自动化安装centos操作系统详解
前言 如果要给很多台客户端主机安装操作系统,要是每一台都拿张安装光盘一台一台主机的去装系统那就太浪费时间和精力了.在生产环境中也不实际,要实现为多台主机自动安装操作系统,那我们怎么实现自动化安装 ...
- Thymeleaf:访问Spring中的bean
项目做了动静分离,即静态文件全部放在nginx中,动态文件在tomcat中,如何引用静态文件,我是这么做的,见下: 运行结果:
- HDU 3579
标准同余方程组,只是在求出值后如果为0,应该输出Mi的Lcm: #include<iostream> #include<cstdio> #include<cstring& ...
- JUnit单元测试--IntelliJ IDEA
单元测试的基本使用 一.环境配置 使用idea IDE 进行单元测试,首先需要安装JUnit 插件. 1.安装JUnit插件步骤 File-->settings-->Plguins--&g ...