环境
  虚拟机:VMware 10
  Linux版本:CentOS-6.5-x86_64
  客户端:Xshell4
  FTP:Xftp4
  jdk8
  hadoop-3.1.1
  apache-hive-3.1.1

参考:官网hive操作手册

一、DDL

1、数据类型

data_type
: primitive_type
| array_type
| map_type
| struct_type
| union_type -- (Note: Available in Hive 0.7. and later) primitive_type
: TINYINT
| SMALLINT
| INT
| BIGINT
| BOOLEAN
| FLOAT
| DOUBLE
| DOUBLE PRECISION -- (Note: Available in Hive 2.2. and later)
| STRING
| BINARY -- (Note: Available in Hive 0.8. and later)
| TIMESTAMP -- (Note: Available in Hive 0.8. and later)
| DECIMAL -- (Note: Available in Hive 0.11. and later)
| DECIMAL(precision, scale) -- (Note: Available in Hive 0.13. and later)
| DATE -- (Note: Available in Hive 0.12. and later)
| VARCHAR -- (Note: Available in Hive 0.12. and later)
| CHAR -- (Note: Available in Hive 0.13. and later) array_type
: ARRAY < data_type > map_type
: MAP < primitive_type, data_type > struct_type
: STRUCT < col_name : data_type [COMMENT col_comment], ...> union_type
: UNIONTYPE < data_type, data_type, ... > -- (Note: Available in Hive 0.7. and later)

2、数据库的创建、删除、修改;

3、表的创建、删除、修改;

举例:创建表

hive>CREATE TABLE person(
id INT,
name STRING,
age INT,
likes ARRAY<STRING>,
address MAP<STRING,STRING>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
MAP KEYS TERMINATED BY ':'
LINES TERMINATED BY '\n';

查看表结构:

hive> desc person;
OK
id int
name string
age int
likes array<string>
address map<string,string>
Time taken: 0.095 seconds, Fetched: row(s)
hive> desc formatted person;
OK
# col_name data_type comment
id int
name string
age int
likes array<string>
address map<string,string> # Detailed Table Information
Database: default
OwnerType: USER
Owner: root
CreateTime: Tue Jan :: CST
LastAccessTime: UNKNOWN
Retention:
Location: hdfs://PCS102:9820/root/hive_remote/warehouse/person
Table Type: MANAGED_TABLE
Table Parameters:
COLUMN_STATS_ACCURATE {\"BASIC_STATS\":\"true\",\"COLUMN_STATS\":{\"address\":\"true\",\"age\":\"true\",\"id\":\"true\",\"likes\":\"true\",\"name\":\"true\"}}
bucketing_version
numFiles
numRows
rawDataSize
totalSize
transient_lastDdlTime # Storage Information
SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
InputFormat: org.apache.hadoop.mapred.TextInputFormat
OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Compressed: No
Num Buckets: -
Bucket Columns: []
Sort Columns: []
Storage Desc Params:
collection.delim -
field.delim ,
line.delim \n
mapkey.delim :
serialization.format ,
Time taken: 0.157 seconds, Fetched: row(s)

向表内加载数据:

data:
,小明1,,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明2,,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明3,,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明4,,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明5,,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明6,,lol-book-movie,beijing:shangxuetang-shanghai:pudong
hive> LOAD DATA LOCAL INPATH '/root/data' INTO TABLE person;
Loading data to table default.person
OK
Time taken: 0.185 seconds
hive> select * from person;
OK
小明1 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明2 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明3 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明4 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明5 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明6 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
Time taken: 0.126 seconds, Fetched: row(s)
hive>

备注:向表导入数据最好按照表定义的结构来安排数据,如果不按照这个格式,文件也能上传到HDFS,这是通过hive select查看的时候查不出来,无法格式化输出。

struct类型:

数据  /root/data:

,xiaoming:
,xiaohong:

建表 从linux本地文件系统导入数据:

hive> create table student(
> id int,
> info STRUCT <name:string,age:int>
> )
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> COLLECTION ITEMS TERMINATED BY ':'
> ;
OK
Time taken: 0.712 seconds
hive> show tables;
OK
logtbl
person
person3
psn2
psn3
psn4
student
test01
Time taken: 0.1 seconds, Fetched: row(s)
hive> load data local inpath '/root/data' into table student;
Loading data to table default.student
OK
Time taken: 0.365 seconds
hive> select * from student;
OK
1 {"name":"xiaoming","age":12}
2 {"name":"xiaohong","age":11}
Time taken: 1.601 seconds, Fetched: row(s)
hive>

对比从hdfs导入数据:

先上传文件到hdfs  根目录:

[root@PCS102 ~]# hdfs dfs -put data /
[root@PCS102 ~]#

去掉 local:

hive> load data inpath '/data' into table student;
Loading data to table default.student
OK
Time taken: 0.161 seconds
hive> select * from student;
OK
1 {"name":"xiaoming","age":12}
2 {"name":"xiaohong","age":11}
1 {"name":"xiaoming","age":12}
2 {"name":"xiaohong","age":11}
Time taken: 0.118 seconds, Fetched: row(s)
hive>

导入之后,hdfs根目录下data文件被移动(注意不是复制)到student下面:

Hive 内部表:CREATE TABLE [IF NOT EXISTS] table_name,删除表时,元数据与数据都会被删除
Hive 外部表:CREATE EXTERNAL TABLE [IF NOT EXISTS] table_name LOCATION hdfs_path,删除外部表只删除metastore的元数据,不删除hdfs中的表数据

举例:

CREATE EXTERNAL TABLE person3(
id INT,
name STRING,
age INT,
likes ARRAY<STRING>,
address MAP<STRING,STRING>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
MAP KEYS TERMINATED BY ':'
LINES TERMINATED BY '\n'
LOCATION '/usr/';

Hive 建表
Create Table Like:
CREATE TABLE empty_key_value_store LIKE key_value_store;

Create Table As Select (CTAS):
CREATE TABLE new_key_value_store
AS
SELECT columA, columB FROM key_value_store;

4、分区 提高查询效率,根据需求确定分区

(1)创建分区(分区字段不能再表的列中)
举例:

CREATE TABLE psn2(
id INT,
name STRING,
likes ARRAY<STRING>,
address MAP<STRING,STRING>
)
PARTITIONED BY (age int)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
MAP KEYS TERMINATED BY ':'
LINES TERMINATED BY '\n'; 否则报错:
FAILED: SemanticException [Error ]: Column repeated in partitioning columns
hive> CREATE TABLE psn2(
> id INT,
> name STRING,
> likes ARRAY<STRING>,
> address MAP<STRING,STRING>
> )
> PARTITIONED BY (age int)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> COLLECTION ITEMS TERMINATED BY '-'
> MAP KEYS TERMINATED BY ':'
> LINES TERMINATED BY '\n';
OK
Time taken: 0.167 seconds
hive> desc psn2;
OK
id int
name string
likes array<string>
address map<string,string>
age int # Partition Information
# col_name data_type comment
age int
Time taken: 0.221 seconds, Fetched: row(s)
hive>
导入数据:
hive> LOAD DATA LOCAL INPATH '/root/data1' INTO TABLE psn2 partition (age=);
Loading data to table default.psn2 partition (age=)
OK
Time taken: 0.678 seconds
hive> select * from psn2;
OK
小明1 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明2 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明3 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明4 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明5 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明6 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
Time taken: 1.663 seconds, Fetched: row(s)
hive>

hive> LOAD DATA LOCAL INPATH '/root/data1' INTO TABLE psn2 partition (age=);
Loading data to table default.psn2 partition (age=)
OK
Time taken: 0.36 seconds
hive>

(2)修改分区

创建分区:

hive> CREATE TABLE psn3(
> id INT,
> name STRING,
> likes ARRAY<STRING>,
> address MAP<STRING,STRING>
> )
> PARTITIONED BY (age int,sex string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> COLLECTION ITEMS TERMINATED BY '-'
> MAP KEYS TERMINATED BY ':'
> LINES TERMINATED BY '\n';
OK
Time taken: 0.061 seconds

导入数据:

hive> LOAD DATA LOCAL INPATH '/root/data1' INTO TABLE psn3 partition (age=10,sex='boy');
Loading data to table default.psn3 partition (age=, sex=boy)
OK
Time taken: 0.351 seconds
hive> LOAD DATA LOCAL INPATH '/root/data1' INTO TABLE psn3 partition (age=20,sex='boy');
Loading data to table default.psn3 partition (age=, sex=boy)
OK
Time taken: 0.339 seconds

增加分区:

hive> alter table psn3 add partition (age=10,sex='man');
OK
Time taken: 0.1 seconds
hive> alter table psn3 add partition (age=20,sex='man');
OK
Time taken: 0.067 seconds

删除分区:

hive> alter table psn3 drop partition (sex='boy');
Dropped the partition age=10/sex=boy
Dropped the partition age=20/sex=boy
OK
Time taken: 0.472 seconds
hive>

二、DML

导入数据

1、load 其实就是hdfs dfs -put 上传文件
2、insert 插入数据,作用:(1)复制表;(2)中间表;(3)向不同表插入不同数据

CREATE TABLE psn4(
id INT,
name STRING,
likes ARRAY<STRING>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
LINES TERMINATED BY '\n'; from psn3
insert overwrite table psn4
select id,name,likes;

或者

from psn3
insert overwrite table psn4
select id,name,likes
insert overwrite table psn5
select id,name;

三、Hive SerDe - Serializer and Deserializer
SerDe 用于做序列化和反序列化。
构建在数据存储和执行引擎之间,对两者实现解耦。
Hive通过ROW FORMAT DELIMITED以及SERDE进行内容的读写。
row_format
: DELIMITED
[FIELDS TERMINATED BY char [ESCAPED BY char]]
[COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char]
[LINES TERMINATED BY char]
: SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

建表:

hive> CREATE TABLE logtbl (
> host STRING,
> identity STRING,
> t_user STRING,
> a_time STRING,
> request STRING,
> referer STRING,
> agent STRING)
> ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
> WITH SERDEPROPERTIES (
> "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) \\[(.*)\\] \"(.*)\" (-|[0-9]*) (-|[0-9]*)"
> )
> STORED AS TEXTFILE;
OK
Time taken: 0.059 seconds

数据:

192.168.57.4 - - [/Feb/::: +] "GET /bg-upper.png HTTP/1.1"  -
192.168.57.4 - - [/Feb/::: +] "GET /bg-nav.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /asf-logo.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-button.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-middle.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET / HTTP/1.1"
192.168.57.4 - - [/Feb/::: +] "GET / HTTP/1.1"
192.168.57.4 - - [/Feb/::: +] "GET /tomcat.css HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /tomcat.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /asf-logo.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-middle.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-button.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-nav.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-upper.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET / HTTP/1.1"
192.168.57.4 - - [/Feb/::: +] "GET /tomcat.css HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /tomcat.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET / HTTP/1.1"
192.168.57.4 - - [/Feb/::: +] "GET /tomcat.css HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /tomcat.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-button.png HTTP/1.1" -
192.168.57.4 - - [/Feb/::: +] "GET /bg-upper.png HTTP/1.1" -

导入数据:

hive> load data local inpath '/root/log' into table logtbl;
Loading data to table default.logtbl
OK
Time taken: 0.137 seconds

查询数据:

hive> select * from logtbl;
OK
192.168.57.4 - - /Feb/::: + GET /bg-upper.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-nav.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /asf-logo.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-button.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-middle.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET / HTTP/1.1
192.168.57.4 - - /Feb/::: + GET / HTTP/1.1
192.168.57.4 - - /Feb/::: + GET /tomcat.css HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /tomcat.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /asf-logo.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-middle.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-button.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-nav.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-upper.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET / HTTP/1.1
192.168.57.4 - - /Feb/::: + GET /tomcat.css HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /tomcat.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET / HTTP/1.1
192.168.57.4 - - /Feb/::: + GET /tomcat.css HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /tomcat.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-button.png HTTP/1.1 -
192.168.57.4 - - /Feb/::: + GET /bg-upper.png HTTP/1.1 -
Time taken: 0.102 seconds, Fetched: row(s)
hive>

四、Beeline 和hive作用相同另外一种方式,主要作用输出类似二维表格(mysql控制台风格)
/usr/local/apache-hive-3.1.1-bin/bin/beeline 要与/usr/local/apache-hive-3.1.1-bin/bin/HiveServer2配合使用

首先,服务端启动hiveserver2
然后,客户端通过beeline两种方式连接到hive
1、beeline -u jdbc:hive2://localhost:10000/default -n root
2、beeline
beeline> !connect jdbc:hive2://<host>:<port>/<db>;auth=noSasl root 123
默认 用户名、密码不验证,命令行使用命令前面加!
退出使用:!quit

五、Hive JDBC

Hive JDBC运行方式
服务端启动hiveserver2后,在java代码中通过调用hive的jdbc访问默认端口10000进行连接、访问

package test.hive;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement; public class HiveJdbcClient { private static String driverName = "org.apache.hive.jdbc.HiveDriver"; public static void main(String[] args) throws SQLException {
try {
Class.forName(driverName);
} catch (ClassNotFoundException e) {
e.printStackTrace();
} Connection conn = DriverManager.getConnection("jdbc:hive2://134.32.123.102:10000/default", "root", "");
Statement stmt = conn.createStatement();
String sql = "select * from psn2 limit 5";
ResultSet res = stmt.executeQuery(sql);
while (res.next()) {
System.out.println(res.getString(1) + "-" + res.getString("name"));
}
} }

【Hive学习之二】Hive SQL的更多相关文章

  1. MyBatis学习 之 二、SQL语句映射文件(2)增删改查、参数、缓存

    目录(?)[-] 二SQL语句映射文件2增删改查参数缓存 select insert updatedelete sql parameters 基本类型参数 Java实体类型参数 Map参数 多参数的实 ...

  2. MyBatis学习 之 二、SQL语句映射文件(1)resultMap

    目录(?)[-] 二SQL语句映射文件1resultMap resultMap idresult constructor association联合 使用select实现联合 使用resultMap实 ...

  3. Hive学习笔记二

    目录 Hive常见属性配置 将本地库文件导入Hive案例 Hive常用交互命令 Hive其他命令操作 参数配置方式 Hive常见属性配置 1.Hive数据仓库位置配置 1)Default数据仓库的最原 ...

  4. Hive学习之二 《Hive的安装之自定义mysql数据库》

    由于MySQL便于管理,在学习过程中,我选择MySQL. 一,配置元数据库. 1.安装MySQL,采用yum方式. ①yum  install  mysql-server,安装mysql服务端,安装服 ...

  5. Hive学习之六 《Hive进阶— —hive jdbc》 详解

    接Hive学习五 http://www.cnblogs.com/invban/p/5331159.html 一.配置环境变量 hive jdbc的开发,在开发环境中,配置Java环境变量 修改/etc ...

  6. Hive学习之一 《Hive的介绍和安装》

    一.什么是Hive Hive是建立在 Hadoop 上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储.查询和分析存储在 Hadoop 中的大规模数据 ...

  7. 【Hive学习之八】Hive 调优【重要】

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  8. 【Hive学习之七】Hive 运行方式&权限管理

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  9. 【Hive学习之一】Hive简介

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

随机推荐

  1. python接口测试实例--数据驱动(程序与数据分离)

    #encoding=utf-8import requestsimport jsonimport osimport hashlibimport picklefrom conf import * stat ...

  2. java怎么实现统计一个字符串中字符出现的次数

    问题:假设字符串仅仅保护a-z 的字母,java怎么实现统计一个字符串中字符出现的次数?而且,如果压缩后的字符数不小于原始字符数,则返回. 处理逻辑:首先拆分字符串,以拆分出的字符为key,以字符出现 ...

  3. 异常 java.net.ConnectException: Connection refused: no further information

    java.net.ConnectException: Connection refused: no further information at sun.nio.ch.SocketChannelImp ...

  4. 【Linux】常用指令、ps查看进程、kill杀进程、启动停止tomcat命令、查看日志、查看端口、find查找文件

    1.说出 10 个 linux 常用的指令 1) ls 查看目录中的文件 2)cd /home 进入 '/ home' 目录:cd .. 返回上一级目录:cd ../.. 返回上两级目录 3)mkdi ...

  5. ORACLE12C架构图

  6. open '/dev/hwlog_switch' fail -1, 13. Permission denied

    https://blog.csdn.net/qq_36317441/article/details/79376522 将HBuilder开发的APP运行在华为手机上时,控制台显示 open '/dev ...

  7. 让IIS6支持任意扩展名和未知扩展名的下载

    IIS6的安全性提高了很多,为了防止扩展名欺骗带来的安全性问题,限制了扩展名MIME类型. IIS6 只为对具有已知文件扩展名的文件的请求提供服务.如果请求内容的文件扩展名未映射到已知的扩展,则服务器 ...

  8. [django]主次表如何取出对方数据[主表obj.子表__set()]

    [sql]mysql管理手头手册,多对多sql逻辑 国家--城市例子 class Country(models.Model): name = models.CharField(max_length=3 ...

  9. IOT-SpringBoot-angular启动

    1  D:\workspace_iot\iot-hub\src\main\angular     cmd 启动  npm  start 2  eclipse中启动springboot 3  local ...

  10. Jmeter知识点

    聚合报告说明 https://www.cnblogs.com/duanxz/p/5464993.html JMeter之Ramp-up Period(in seconds)说明(可同时并发) http ...