Combination Sum | & || & ||| & IV
Combination Sum |
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is: [7] [2, 2, 3]
Notice
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
given candidate set 2,3,6,7 and target 7,
A solution set is: [7] [2, 2, 3]
分析:递归
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> listsAll = new ArrayList<>();
Arrays.sort(candidates);
helper(, , candidates, target, new ArrayList<>(), listsAll);
return listsAll;
}
public static void helper(int index, int total, int[] candidates, int target, List<Integer> list, List<List<Integer>> listsAll) {
if (index >= candidates.length || total >= target) return;
list.add(candidates[index]);
total += candidates[index];
if (total == target) {
listsAll.add(new ArrayList<>(list));
}
helper(index, total, candidates, target, list, listsAll);
total = total - candidates[index];
list.remove(list.size() - );
helper(index + , total, candidates, target, list, listsAll);
}
}
Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Notice
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
Given candidate set [10,1,6,7,2,1,5] and target 8,
A solution set is:
[
[1,7],
[1,2,5],
[2,6],
[1,1,6]
]
public class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> listsAll = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
helper(, , candidates, target, new ArrayList<>(), listsAll);
return listsAll;
}
public static void helper(int index, int total, int[] candidates, int target, List<Integer> list, List<List<Integer>> listsAll) {
if (index >= candidates.length || total >= target) return;
list.add(candidates[index]);
total += candidates[index];
if (total == target) {
listsAll.add(new ArrayList<Integer>(list));
}
helper(index + , total, candidates, target, list, listsAll);
total = total - candidates[index];
list.remove(list.size() - );
while (index + < candidates.length && candidates[index] == candidates[index + ]) {
index++;
}
helper(index + , total, candidates, target, list, listsAll);
}
}
Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
分析: 这题和change coin非常相似。
public class Solution {
public int combinationSum4(int[] nums, int target) {
if (nums == null || nums.length == ) return ;
int[] dp = new int[target + ];
dp[] = ;
for (int i = ; i <= target; i++) {
for (int num : nums) {
if (i - num >= ) {
dp[i] += dp[i - num];
}
}
}
return dp[target];
}
}
参考请注明出处:cnblogs.com/beiyeqingteng/
Combination Sum | & || & ||| & IV的更多相关文章
- LC 377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 39. Combination Sum + 40. Combination Sum II + 216. Combination Sum III + 377. Combination Sum IV
▶ 给定一个数组 和一个目标值.从该数组中选出若干项(项数不定),使他们的和等于目标值. ▶ 36. 数组元素无重复 ● 代码,初版,19 ms .从底向上的动态规划,但是转移方程比较智障(将待求数分 ...
- [LeetCode] 377. Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 377. Combination Sum IV
问题 Given an integer array with all positive numbers and no duplicates, find the number of possible c ...
- Leetcode 377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- leetcode日记 Combination sum IV
题目: Given an integer array with all positive numbers and no duplicates, find the number of possible ...
- Leetcode: Combination Sum IV && Summary: The Key to Solve DP
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
随机推荐
- javamail技术
package com.zh.javaEmail; import java.util.*; import javax.mail.*; import javax.mail.internet.*; imp ...
- .net架构设计读书笔记--第三章 第10节 命令职责分离(CQRS)简介(Introducing CQRS)
一.分离查询命令 Separating commands from queries 早期的面向DDD设计方法的难点是如何设计一个类,这个类要包含域的方方面面.通常来说,任务软件系统方法调用可以 ...
- Java基础-final变量和普通变量的区别
当用final作用于类的成员变量时,成员变量(注意是类的成员变量,局部变量只需要保证在使用之前被初始化赋值即可)必须在定义时或者构造器中进行初始化赋值,而且final变量一旦被初始化赋值之后,就不能再 ...
- java基础-关键字-native
一. 什么是Native Method 简单地讲,一个Native Method就是一个java调用非java代码的接口.一个Native Method是这样一个java的方法:该方法的实现由 ...
- @SuppressWarnings含义
J2SE 提供的最后一个批注是 @SuppressWarnings.该批注的作用是给编译器一条指令,告诉它对被批注的代码元素内部的某些警告保持静默. @SuppressWarnings 批注允许您选择 ...
- 【BZOJ-2588】Count on a tree 主席树 + 倍增
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 3749 Solved: 873[ ...
- 宿主机( win 7 系统) ping 虚拟机VMware( cent os 6.6 ) 出现“请求超时”或者“无法访问目标主机”的解决方法
首先虚拟机的网络连接设置为"Host-only": 然后在 cmd 窗口中查看 VMnet1 的 ip 地址,这里是 192.168.254.1 接下来在 Linux 中设置网卡地 ...
- 循序渐进Linux 3:Linux下软件安装与管理
一.源码安装 ./configuremakemake install 二.RPM包 1. 安装软件包 rpm -i [辅助选项] file1.rpm file2.rpm主选项 -i: install, ...
- MySQL逻辑备份与恢复
备份:mysqldump -uroot -p yyzc department > /home/admin/yyzc_backup.sql 恢复:mysql -uroot -p yyzc < ...
- inux环境PHP7.0安装
inux环境PHP7.0安装 PHP7和HHVM比较PHP7的在真实场景的性能确实已经和HHVM相当, 在一些场景甚至超过了HHVM.HHVM的运维复杂, 是多线程模型, 这就代表着如果一个线程导 ...