Combination Sum | & || & ||| & IV
Combination Sum |
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is: [7] [2, 2, 3]
Notice
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
given candidate set 2,3,6,7 and target 7,
A solution set is: [7] [2, 2, 3]
分析:递归
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> listsAll = new ArrayList<>();
Arrays.sort(candidates);
helper(, , candidates, target, new ArrayList<>(), listsAll);
return listsAll;
}
public static void helper(int index, int total, int[] candidates, int target, List<Integer> list, List<List<Integer>> listsAll) {
if (index >= candidates.length || total >= target) return;
list.add(candidates[index]);
total += candidates[index];
if (total == target) {
listsAll.add(new ArrayList<>(list));
}
helper(index, total, candidates, target, list, listsAll);
total = total - candidates[index];
list.remove(list.size() - );
helper(index + , total, candidates, target, list, listsAll);
}
}
Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Notice
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
Given candidate set [10,1,6,7,2,1,5] and target 8,
A solution set is:
[
[1,7],
[1,2,5],
[2,6],
[1,1,6]
]
public class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> listsAll = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
helper(, , candidates, target, new ArrayList<>(), listsAll);
return listsAll;
}
public static void helper(int index, int total, int[] candidates, int target, List<Integer> list, List<List<Integer>> listsAll) {
if (index >= candidates.length || total >= target) return;
list.add(candidates[index]);
total += candidates[index];
if (total == target) {
listsAll.add(new ArrayList<Integer>(list));
}
helper(index + , total, candidates, target, list, listsAll);
total = total - candidates[index];
list.remove(list.size() - );
while (index + < candidates.length && candidates[index] == candidates[index + ]) {
index++;
}
helper(index + , total, candidates, target, list, listsAll);
}
}
Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
分析: 这题和change coin非常相似。
public class Solution {
public int combinationSum4(int[] nums, int target) {
if (nums == null || nums.length == ) return ;
int[] dp = new int[target + ];
dp[] = ;
for (int i = ; i <= target; i++) {
for (int num : nums) {
if (i - num >= ) {
dp[i] += dp[i - num];
}
}
}
return dp[target];
}
}
参考请注明出处:cnblogs.com/beiyeqingteng/
Combination Sum | & || & ||| & IV的更多相关文章
- LC 377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 39. Combination Sum + 40. Combination Sum II + 216. Combination Sum III + 377. Combination Sum IV
▶ 给定一个数组 和一个目标值.从该数组中选出若干项(项数不定),使他们的和等于目标值. ▶ 36. 数组元素无重复 ● 代码,初版,19 ms .从底向上的动态规划,但是转移方程比较智障(将待求数分 ...
- [LeetCode] 377. Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 377. Combination Sum IV
问题 Given an integer array with all positive numbers and no duplicates, find the number of possible c ...
- Leetcode 377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- leetcode日记 Combination sum IV
题目: Given an integer array with all positive numbers and no duplicates, find the number of possible ...
- Leetcode: Combination Sum IV && Summary: The Key to Solve DP
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
随机推荐
- new-nav-html
<header id="masthead" class="masthead" role="banner"> <h1 cla ...
- 如何解决mysql数据库X小时无连接自动关闭
windows下打开my.ini,增加: interactive_timeout=28800000 wait_timeout=28800000 专家解答:MySQL是一个小型关系型数据库管理系统,由于 ...
- 【POJ 2923】Relocation(状压DP+DP)
题意是给你n个物品,每次两辆车运,容量分别是c1,c2,求最少运送次数.好像不是很好想,我看了网上的题解才做出来.先用状压DP计算i状态下,第一辆可以运送的重量,用该状态的重量总和-第一辆可以运送的, ...
- poj 3463 最短路与次短路&&统计个数
题意:求最短路和比最短路长度多1的次短路的个数 本来想图(有)方(模)便(版)用spfa的,结果妹纸要我看看dijkstra怎么解.... 写了三遍orz Ver1.0:堆优化+邻接表,WA //不能 ...
- Vijos1459 车展 (treap)
描述 遥控车是在是太漂亮了,韵韵的好朋友都想来参观,所以游乐园决定举办m次车展.车库里共有n辆车,从左到右依次编号为1,2,…,n,每辆车都有一个展台.刚开始每个展台都有一个唯一的高度h[i].主管已 ...
- sdibt 1244 烦人的幻灯片
在这个OJ站还没号,暂时没提交,只是过了样例 真不愧是烦人的幻灯片,烦了我一小时 ---更新:OJ测试完毕,AC 烦人的幻灯片问题 Time Limit: 1 Sec Memory Limit: 6 ...
- cheerio, dom操作模块
cheerio 为服务器特别定制的,快速.灵活.实施的jQuery核心实现. Introduction 将HTML告诉你的服务器 var cheerio = require('cheerio'), $ ...
- xampp 安装red扩展出错解决
Linux Mint + Xampp Error + ‘grep: /opt/lampp/include/php/main/php.h: No Such File Or Directory’ FEBR ...
- web classpath 路径说明
classpath路径在每个J2ee项目中都会用到,即WEB-INF下面的classes目录,所有src目录下面的java.xml.properties等文件编译后都会在此,所以在开发时常将相应的xm ...
- CSS3 动画animation
关键帧 什么是关键帧.一如上面对Flash原理的描述一样,我们知道动画其实由许多静态画面组成,第一个这样的静态画面可以表述为一帧.其中关键帧是在动画过程中体现了物理明显变化的那些帧. 比如之前的例子中 ...