平衡二叉树---Shaolin
Description
When a young man passes all the tests and is declared a new monk of Shaolin, there will be a fight , as a part of the welcome party. Every monk has an unique id and a unique fighting grade, which are all integers. The new monk must fight with a old monk whose fighting grade is closest to his fighting grade. If there are two old monks satisfying that condition, the new monk will take the one whose fighting grade is less than his.
The master is the first monk in Shaolin, his id is 1,and his fighting grade is 1,000,000,000.He just lost the fighting records. But he still remembers who joined Shaolin earlier, who joined later. Please recover the fighting records for him.
Input
In each test case:
The first line is a integer n (0 <n <=100,000),meaning the number of monks who joined Shaolin after the master did.(The master is not included).Then n lines follow. Each line has two integer k and g, meaning a monk's id and his fighting grade.( 0<= k ,g<=5,000,000)
The monks are listed by ascending order of jointing time.In other words, monks who joined Shaolin earlier come first.
The input ends with n = 0.
Output
Sample Input
2 1
3 3
4 2
0
Sample Output
3 2
4 2
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
struct data
{
int l,r,v,vo;
int rnd;
}tr[];
int size,root,ans1,ans2;///定义全局整型变量默认初值为0; void rturn(int &k)
{
int t=tr[k].l;
tr[k].l=tr[t].r;
tr[t].r=k;
k=t;
} void lturn(int &k)
{
int t=tr[k].r;
tr[k].r=tr[t].l;
tr[t].l=k;
k=t;
} void insert(int &k,int x,int xo)
{
if(k==)
{
size++;///记录已经使用的结构体数目;
k=size;
tr[k].v=x;
tr[k].vo=xo;
tr[k].rnd=rand();
return;
}
if(x>tr[k].v)
{
insert(tr[k].r,x,xo);
if(tr[tr[k].r].rnd<tr[k].rnd)
lturn(k);
}
else
{
insert(tr[k].l,x,xo);
if(tr[tr[k].l].rnd<tr[k].rnd)
rturn(k);
}
} void query_pro(int k,int x)///求x的前驱(前驱定义为小于x,且最大的数);
{
if(k==)return;
if(tr[k].v<x)
{
ans1=k;
query_pro(tr[k].r,x);
}
else query_pro(tr[k].l,x);
} void query_sub(int k,int x)///求x的后继(后继定义为大于x,且最小的数);
{
if(k==)return;
if(tr[k].v>x)
{
ans2=k;
query_sub(tr[k].l,x);
}
else query_sub(tr[k].r,x);
} int main()
{
int n,xo,x;
while(scanf("%d",&n)!=EOF&&n)
{
root=;
size=;
for(int i=;i<;i++)
{
tr[i].l=;
tr[i].r=;
tr[i].v=;
tr[i].vo=;
tr[i].rnd=;
}
insert(root,,);
while(n--)
{
scanf("%d %d",&xo,&x);
insert(root,x,xo);
ans1=;
ans2=;
query_pro(root,x);
query_sub(root,x);
if(ans1==) printf("%d %d\n",xo,tr[ans2].vo);\
else
{
if(x-tr[ans1].v<=tr[ans2].v-x)
printf("%d %d\n",xo,tr[ans1].vo);
else printf("%d %d\n",xo,tr[ans2].vo);
}
}
}
return ;
}
平衡二叉树---Shaolin的更多相关文章
- 算法与数据结构(十一) 平衡二叉树(AVL树)
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...
- [LeetCode] Balanced Binary Tree 平衡二叉树
Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...
- Java数据结构——平衡二叉树的平衡因子(转自牛客网)
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性.首先要找出插入新结点后失去平衡的最小子树根结点的指针.然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树.当失去平衡的最小子树被 ...
- 【数据结构】平衡二叉树—AVL树
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...
- 平衡二叉树AVL删除
平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是 ...
- 平衡二叉树AVL插入
平衡二叉树(Balancedbinary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskiiand Landis)于1962年首先提出的,所以又称为AVL树. 定义:平衡二叉树或为 ...
- 数据结构快速回顾——平衡二叉树 AVL (转)
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵 ...
- LeetCode——Balanced Binary Tree(判断是否平衡二叉树)
问题: Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced bin ...
- 数据结构之平衡二叉树(AVL树)
平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了 ...
随机推荐
- Angular 使用
tks: 使用: http://developer.51cto.com/art/201302/380661.htm http://www.infoq.com/cn/news/2013/02/angul ...
- CSS3绘制旋转的太极图案(一)
实现步骤: 基础HTML: <div class="box-taiji"> <div class="circle-01">< ...
- 解决ubuntu解压zip文件名乱码的问题
1. 安装7-zip 和 convmv : 命令: sudo apt-get install convmv p7zip-full 2. 解压zip文件: 命令:LANG=C 7z e yourZIPf ...
- oracle 数据库时间类型为字符串 时间范围大小查询
select * from invoicedetail t2 where t2.Memo is null and to_char(to_date(t2.PrintDate,'yyyy-MM-dd hh ...
- WebDriver等待和同步对象(基于C#)
WebDriver等待和同步对象(基于C#) http://www.docin.com/p-748352113.html
- 专访Linux嵌入式开发韦东山操作系统图书作者--转
CSDN学院讲师韦东山:悦己之作,方能悦人 发表于2015-04-28 08:09| 6669次阅读| 来源CSDN| 24 条评论| 作者夏梦竹 专访Linux嵌入式开发韦东山操作系统图书作者 摘要 ...
- java之源码路径及api
jav源码地址:D:\Program Files\jdk1.7\src.zip class类地址:D:\Program Files\jdk1.7\jre\lib\rt.jar 在线api底地址:htt ...
- 在ubuntu下配置apache运行python脚本
2008-12-05 常用的简单命令 sudo apt-get remove --purge apache apache2 (彻底删除) sudo /etc/init.d/apache2 r ...
- 二十一、【.Net开源框架】EFW框架Web前端开发之目录结构和使用FireBug调试方法
回<[开源]EFW框架系列文章索引> EFW框架源代码下载V1.2:http://pan.baidu.com/s/1hcnuA EFW框架实例源代码下载:http://pan.baidu. ...
- 【转】ORATOP工具使用说明
文章转自:http://lintzyuan.blogspot.jp/2014/07/oratop.html ORATOP 前言:隨著PC Server的規格及速度愈來愈快,大多數的公司摒棄大型主機 ...