Currency Exchange
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 22123   Accepted: 7990

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian
Rubles at the exchange point, where the exchange rate is 29.75, and the
commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.

You surely know that there are N different currencies you can deal
with in our city. Let us assign unique integer number from 1 to N to
each currency. Then each exchange point can be described with 6 numbers:
integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.

Nick has some money in currency S and wonders if he can somehow,
after some exchange operations, increase his capital. Of course, he
wants to have his money in currency S in the end. Help him to answer
this difficult question. Nick must always have non-negative sum of money
while making his operations.

Input

The
first line of the input contains four numbers: N - the number of
currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=103.

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.

Let us call some sequence of the exchange operations simple if no
exchange point is used more than once in this sequence. You may assume
that ratio of the numeric values of the sums at the end and at the
beginning of any simple sequence of the exchange operations will be less
than 104.

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

Source

解析

题意:

有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加

货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的

怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)

分析:

一种货币就是一个点

一个“兑换点”就是图上两种货币之间的一个兑换方式,是双边,但A到B的汇率和手续费可能与B到A的汇率和手续费不同。

唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换

而A到B的权值为(V-Cab)*Rab

本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。

因此初始化dis(S)=V   而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。

spfa算法:

下面是bellman——ford队列优化的代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
double cost[105][105],rate[105][105];
int n,vis[105];
double v,dis[105];
bool bellman_ford(int start){
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[start]=v;
queue<int>q;
q.push(start);
vis[start]=1;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=0;
for(int i=1;i<=n;i++){
if(dis[i]<(dis[x]-cost[x][i])*rate[x][i]){
dis[i]=(dis[x]-cost[x][i])*rate[x][i];
if(dis[start]>v)
return true;
if(!vis[i]){
q.push(i);
vis[i]=1;
}
}
}
}
return false;
}
int main(){
int m,s;
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
memset(cost,0,sizeof(vis));
memset(rate,0,sizeof(rate)); for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
if(i==j)
rate[i][j]=1.0;
}
int x,y;
double rab,rba,cab,cba;
for(int i=1;i<=m;i++){
cin>>x>>y>>rab>>cab>>rba>>cba;
cost[x][y]=cab;
cost[y][x]=cba;
rate[x][y]=rab;
rate[y][x]=rba;
}
if(bellman_ford(s))
printf("YES\n");
else printf("NO\n");
}
return 0;
}

  下面是bellman——ford算法

bellman——ford算法中的调用函数的解析

如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入

代码

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int Count,n,m,s;
double v;
double dis[105];
struct node{
int x;
int y;
double cost,rate;
}que[105];
bool Bellman_Ford(){
memset(dis,0,sizeof(dis));//此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[s]=v;
int flag;
for(int i=1;i<n;i++){
flag=0;
for(int j=0;j<Count;j++){
int x=que[j].x;
int y=que[j].y;
double cost=que[j].cost;
double rate=que[j].rate;
if(dis[y]<(dis[x]-cost)*rate){
dis[y]=(dis[x]-cost)*rate;
flag=1;
}
}
if(!flag)
break;
}
for(int i=0;i<Count;i++){//正环能够无限松弛,
if(dis[que[i].y]<(dis[que[i].x]-que[i].cost)*que[i].rate)
return true;
}//如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入 return false;
}
int main(){
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
int x,y;
double rab,rba,cba,cab;
Count=0;
for(int i=1;i<=m;i++){
scanf("%d%d%lf%lf%lf%lf",&x,&y,&rab,&cab,&rba,&cba);
que[Count].x=x;
que[Count].y=y;
que[Count].cost=cab;
que[Count].rate=rab;
Count++;
que[Count].x=y;
que[Count].y=x;
que[Count].cost=cba;
que[Count].rate=rba;
Count++;
}
if(Bellman_Ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

poj1860 bellman—ford队列优化 Currency Exchange的更多相关文章

  1. bellman ford优先队列优化简介模板

    #include<iostream>#include<cstdio>#include<utility>#include<queue>#include&l ...

  2. POJ1860——Currency Exchange(BellmanFord算法求最短路)

    Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...

  3. Currency Exchange POJ1860

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  4. POJ1860 Currency Exchange(bellman-ford)

    链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...

  5. POJ1860 Currency Exchange【最短路-判断环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  6. POJ1860:Currency Exchange(BF)

    http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. ...

  7. poj1860 Currency Exchange(spfa判断正环)

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  8. POJ1860 Currency Exchange —— spfa求正环

    题目链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  9. Bellman_ford 算法 Currency Exchange POJ1860

    Bellman_ford算法用于寻找正环或者负环! 算法导论: 24.1 The Bellman-Ford algorithm The Bellman-Ford algorithm solves th ...

随机推荐

  1. DOM(八)使用DOM控制表单

    1.表单简介 表单<form>是网页中交互最多的形式之一,它通过各种形式接收用户的数据,包括下拉列表框,单选按钮,复选框和文本框,本篇主要介绍表单中常用的属性和方法 javascript中 ...

  2. emberJS

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  3. hdu2923 最短路floyd

    建图还是有点烦人的. #include<map> #include<string> #include<stdio.h> #include<iostream&g ...

  4. Hibernate-一对多的关系维护

    一对多 和多对一 一般是看需求来确定的,很多时候都是设置成双向的 举个最最普通的离子 :一个班级里面有多个学生 多个学生属于一个班级 从学生表来看 就是多对一的关系 从班级表来看就是一对多的关系 需求 ...

  5. WEB版一次选择多个文件进行批量上传(Plupload)的解决方案

    WEB版一次选择多个文件进行批量上传(Plupload)的解决方案  转载自http://www.cnblogs.com/chillsrc/archive/2013/01/30/2883648.htm ...

  6. 【bzoj1562】 NOI2009—变换序列

    http://www.lydsy.com/JudgeOnline/problem.php?id=1562 (题目链接) 题意 给出一个序列(0~n-1),这个序列经过某个变换会成为另外一个序列,但是其 ...

  7. codevs1225 八数码难题

    题目描述 Description Yours和zero在研究A*启发式算法.拿到一道经典的A*问题,但是他们不会做,请你帮他们.问题描述 在 3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数 ...

  8. jquery中的prop和attr比较区别

    近期和一同事争执prop和attr的区别,也查了很多,同事说它只是特性和固有属性的区别,但是我也查到了一些其他的,故此,来总结一下吧! 1.固有属性和特别属性 对于HTML元素本身就带有的固有属性,在 ...

  9. jQuery操作滚动条

    一.窗体滚动条 1.获取窗体滚动条当前纵向和横向位置 var currentY=$(document.body).scrollTop();//窗体滚动条纵向位置 var currentX=$(docu ...

  10. Unity-Tween

    1.GoKit 免费开源 AssetStore:https://www.assetstore.unity3d.com/en/#!/content/3663 下载地址:https://github.co ...