poj1860 bellman—ford队列优化 Currency Exchange
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 22123 | Accepted: 7990 |
Description
For example, if you want to exchange 100 US Dollars into Russian
Rubles at the exchange point, where the exchange rate is 29.75, and the
commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal
with in our city. Let us assign unique integer number from 1 to N to
each currency. Then each exchange point can be described with 6 numbers:
integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow,
after some exchange operations, increase his capital. Of course, he
wants to have his money in currency S in the end. Help him to answer
this difficult question. Nick must always have non-negative sum of money
while making his operations.
Input
first line of the input contains four numbers: N - the number of
currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no
exchange point is used more than once in this sequence. You may assume
that ratio of the numeric values of the sums at the end and at the
beginning of any simple sequence of the exchange operations will be less
than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Source
解析
题意:
有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
分析:
一种货币就是一个点
一个“兑换点”就是图上两种货币之间的一个兑换方式,是双边,但A到B的汇率和手续费可能与B到A的汇率和手续费不同。
唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换
而A到B的权值为(V-Cab)*Rab
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。
spfa算法:
下面是bellman——ford队列优化的代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
double cost[105][105],rate[105][105];
int n,vis[105];
double v,dis[105];
bool bellman_ford(int start){
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[start]=v;
queue<int>q;
q.push(start);
vis[start]=1;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=0;
for(int i=1;i<=n;i++){
if(dis[i]<(dis[x]-cost[x][i])*rate[x][i]){
dis[i]=(dis[x]-cost[x][i])*rate[x][i];
if(dis[start]>v)
return true;
if(!vis[i]){
q.push(i);
vis[i]=1;
}
}
}
}
return false;
}
int main(){
int m,s;
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
memset(cost,0,sizeof(vis));
memset(rate,0,sizeof(rate)); for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
if(i==j)
rate[i][j]=1.0;
}
int x,y;
double rab,rba,cab,cba;
for(int i=1;i<=m;i++){
cin>>x>>y>>rab>>cab>>rba>>cba;
cost[x][y]=cab;
cost[y][x]=cba;
rate[x][y]=rab;
rate[y][x]=rba;
}
if(bellman_ford(s))
printf("YES\n");
else printf("NO\n");
}
return 0;
}
下面是bellman——ford算法
bellman——ford算法中的调用函数的解析
如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入
代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int Count,n,m,s;
double v;
double dis[105];
struct node{
int x;
int y;
double cost,rate;
}que[105];
bool Bellman_Ford(){
memset(dis,0,sizeof(dis));//此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[s]=v;
int flag;
for(int i=1;i<n;i++){
flag=0;
for(int j=0;j<Count;j++){
int x=que[j].x;
int y=que[j].y;
double cost=que[j].cost;
double rate=que[j].rate;
if(dis[y]<(dis[x]-cost)*rate){
dis[y]=(dis[x]-cost)*rate;
flag=1;
}
}
if(!flag)
break;
}
for(int i=0;i<Count;i++){//正环能够无限松弛,
if(dis[que[i].y]<(dis[que[i].x]-que[i].cost)*que[i].rate)
return true;
}//如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入 return false;
}
int main(){
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
int x,y;
double rab,rba,cba,cab;
Count=0;
for(int i=1;i<=m;i++){
scanf("%d%d%lf%lf%lf%lf",&x,&y,&rab,&cab,&rba,&cba);
que[Count].x=x;
que[Count].y=y;
que[Count].cost=cab;
que[Count].rate=rab;
Count++;
que[Count].x=y;
que[Count].y=x;
que[Count].cost=cba;
que[Count].rate=rba;
Count++;
}
if(Bellman_Ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
poj1860 bellman—ford队列优化 Currency Exchange的更多相关文章
- bellman ford优先队列优化简介模板
#include<iostream>#include<cstdio>#include<utility>#include<queue>#include&l ...
- POJ1860——Currency Exchange(BellmanFord算法求最短路)
Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...
- Currency Exchange POJ1860
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860 Currency Exchange(bellman-ford)
链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...
- POJ1860 Currency Exchange【最短路-判断环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- POJ1860:Currency Exchange(BF)
http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. ...
- poj1860 Currency Exchange(spfa判断正环)
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860 Currency Exchange —— spfa求正环
题目链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- Bellman_ford 算法 Currency Exchange POJ1860
Bellman_ford算法用于寻找正环或者负环! 算法导论: 24.1 The Bellman-Ford algorithm The Bellman-Ford algorithm solves th ...
随机推荐
- 项目笔记---Windows Service调用Windows API问题
概要 此文来自于最近一个“诡异”的Windows API调用发现Windows Service在调用某些Windows API的过程中失效,在经过漫长的Baidu,之后终于在StackOverFlow ...
- 每天一个linux命令(36):top命令
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.下面详细介绍它的使用方法.top是 一个动态显示过程,即可以通过用户按键来不断刷 ...
- html之给文本框设置宽度和高度/input的无边框效果
<input name="" type="text" style="width:200px; height:20px;" /> ...
- Productivity Power Tools 动画演示--给力的插件工具
免费的精品: Productivity Power Tools 动画演示 Productivity Power Tools 是微软官方推出的 Visual Studio 扩展,被用以提高开发人员生产率 ...
- ActiveMQ 入门使用实例
1.下载ActiveMQ 去官方网站下载:http://activemq.apache.org/download-archives.html 2.运行ActiveMQ 解压缩apache-active ...
- VB中的属性、方法和事件概念解析
Visual Basic 语言中的所有对象都有它们自己的属性.方法和事件,其中包括窗体和控件.可以将属性视为对象的特性,将方法视为对象的操作,而将事件视为对象的响应. 日常生活中的对象(如氦气球)也具 ...
- 点击div区域以外部分,div区域隐藏
核心思想: 监听body的click事件,事件触发的时候判断是否发生在弹出的div上,如果不在,关闭弹层 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTM ...
- RedGate .NET Reflector注册问题(反注册)
Reflector分为桌面版和VS集成版本,当我们使用注册机注册的时候如果注册了Standvard版本,那么我们的VS就不能集成查看,也不能Debug,那么这 显然不是我们想要的,我们会选择重新注册, ...
- POJ1745Divisibility(01背包思想)
Divisibility Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11151 Accepted: 3993 Des ...
- 快速上手如何使用FluentData
http://blog.itpub.net/29511780/viewspace-1194048/ 目录: 一.什么是ORM? 二.使用ORM的优势 三.使用ORM的缺点 四.NET下的ORM框架有 ...