poj1860 bellman—ford队列优化 Currency Exchange
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 22123 | Accepted: 7990 |
Description
For example, if you want to exchange 100 US Dollars into Russian
Rubles at the exchange point, where the exchange rate is 29.75, and the
commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal
with in our city. Let us assign unique integer number from 1 to N to
each currency. Then each exchange point can be described with 6 numbers:
integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow,
after some exchange operations, increase his capital. Of course, he
wants to have his money in currency S in the end. Help him to answer
this difficult question. Nick must always have non-negative sum of money
while making his operations.
Input
first line of the input contains four numbers: N - the number of
currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no
exchange point is used more than once in this sequence. You may assume
that ratio of the numeric values of the sums at the end and at the
beginning of any simple sequence of the exchange operations will be less
than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Source
解析
题意:
有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
分析:
一种货币就是一个点
一个“兑换点”就是图上两种货币之间的一个兑换方式,是双边,但A到B的汇率和手续费可能与B到A的汇率和手续费不同。
唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换
而A到B的权值为(V-Cab)*Rab
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。
spfa算法:
下面是bellman——ford队列优化的代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
double cost[105][105],rate[105][105];
int n,vis[105];
double v,dis[105];
bool bellman_ford(int start){
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[start]=v;
queue<int>q;
q.push(start);
vis[start]=1;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=0;
for(int i=1;i<=n;i++){
if(dis[i]<(dis[x]-cost[x][i])*rate[x][i]){
dis[i]=(dis[x]-cost[x][i])*rate[x][i];
if(dis[start]>v)
return true;
if(!vis[i]){
q.push(i);
vis[i]=1;
}
}
}
}
return false;
}
int main(){
int m,s;
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
memset(cost,0,sizeof(vis));
memset(rate,0,sizeof(rate)); for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
if(i==j)
rate[i][j]=1.0;
}
int x,y;
double rab,rba,cab,cba;
for(int i=1;i<=m;i++){
cin>>x>>y>>rab>>cab>>rba>>cba;
cost[x][y]=cab;
cost[y][x]=cba;
rate[x][y]=rab;
rate[y][x]=rba;
}
if(bellman_ford(s))
printf("YES\n");
else printf("NO\n");
}
return 0;
}
下面是bellman——ford算法
bellman——ford算法中的调用函数的解析
如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入
代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int Count,n,m,s;
double v;
double dis[105];
struct node{
int x;
int y;
double cost,rate;
}que[105];
bool Bellman_Ford(){
memset(dis,0,sizeof(dis));//此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[s]=v;
int flag;
for(int i=1;i<n;i++){
flag=0;
for(int j=0;j<Count;j++){
int x=que[j].x;
int y=que[j].y;
double cost=que[j].cost;
double rate=que[j].rate;
if(dis[y]<(dis[x]-cost)*rate){
dis[y]=(dis[x]-cost)*rate;
flag=1;
}
}
if(!flag)
break;
}
for(int i=0;i<Count;i++){//正环能够无限松弛,
if(dis[que[i].y]<(dis[que[i].x]-que[i].cost)*que[i].rate)
return true;
}//如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入 return false;
}
int main(){
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
int x,y;
double rab,rba,cba,cab;
Count=0;
for(int i=1;i<=m;i++){
scanf("%d%d%lf%lf%lf%lf",&x,&y,&rab,&cab,&rba,&cba);
que[Count].x=x;
que[Count].y=y;
que[Count].cost=cab;
que[Count].rate=rab;
Count++;
que[Count].x=y;
que[Count].y=x;
que[Count].cost=cba;
que[Count].rate=rba;
Count++;
}
if(Bellman_Ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
poj1860 bellman—ford队列优化 Currency Exchange的更多相关文章
- bellman ford优先队列优化简介模板
#include<iostream>#include<cstdio>#include<utility>#include<queue>#include&l ...
- POJ1860——Currency Exchange(BellmanFord算法求最短路)
Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...
- Currency Exchange POJ1860
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860 Currency Exchange(bellman-ford)
链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...
- POJ1860 Currency Exchange【最短路-判断环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- POJ1860:Currency Exchange(BF)
http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. ...
- poj1860 Currency Exchange(spfa判断正环)
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860 Currency Exchange —— spfa求正环
题目链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- Bellman_ford 算法 Currency Exchange POJ1860
Bellman_ford算法用于寻找正环或者负环! 算法导论: 24.1 The Bellman-Ford algorithm The Bellman-Ford algorithm solves th ...
随机推荐
- SequoiaDB 系列源码分析调整
犹豫我经验尚不够丰富,有大牛跟我说,以我这样定下的结构来分析源码,学习效果不太好. 应该先从程序的进程入口函数开始,慢慢的跟流程来分析.先通过系统的启动.退出来分析所用到的技术,像进程模型,线程模型等 ...
- [设计模式] javascript 之 建造者模式
建造者模式说明 1. 将一个复杂对象的 构造 与它的表示相分离,使同样的创建过程可有不同的表示,这就叫做建造者模式. 2. 面向对象语言中的说明,主要角色: 1>. Builder 这个接口类, ...
- Git的基本使用方法和安装&心得体会
1. git的安装和github的注册.代码托管.创建organization.邀请member. (1)git的安装 因为我电脑是windows系统,所以下载的是git for windows.在官 ...
- jQuery技术交流资料
jQuery技术交流资料https://www.zybuluo.com/jikeytang/note/65371
- 【HDU 1009】FatMouse' Trade
题 Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding the ware ...
- GMM算法k-means算法的比较
1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测. ...
- BZOJ-1877 晨跑 最小费用最大流+拆点
其实我是不想做这种水题的QWQ,没办法,剧情需要 1877: [SDOI2009]晨跑 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 1704 Solve ...
- 【poj2186】 Popular Cows
http://poj.org/problem?id=2186 (题目链接) 题意 给出一个n个点m条边的有向图,求其中没有出度强连通分量所包含的点有几个 Solution 其实这道题的题解已经在“题意 ...
- BZOJ2121 字符串游戏
Description BX正在进行一个字符串游戏,他手上有一个字符串L,以及其 他一些字符串的集合S,然后他可以进行以下操作:对于一个在集合S中的字符串p,如果p在L中出现,BX就可以选择是否将其删 ...
- FatMouse的交易问题
想按照某个值排序,用sort()函数,结果想了半天不知道用数组怎么解决,然后看了答案,才知道原来可以用struct,想想我真是笨死了.. 原题描述以及答案如下: Problem Description ...