LINK


有n个大号和m个小号

然后需要对这些号进行匹配,一个大号最多匹配2个小号

匹配条件是大号和小号构成了前缀关系

字符串长度不超过10

问方案数


思路

因为要构成前缀关系

所以就考虑在trie树上dp

\(f_{i,j,k}\)表示i的子树中,还需要来自祖先的j个小号,并且有需要匹配但是没有匹配的小号k个

然后如果当前是一个大号节点

可以从子树中选一个小号

\(f_{u,j,k - 1}<=f_{v,j,k} * k\)

可以从子树中选两个小号

\(f_{u,j,k - 2}<=f_{v,j,k} * (\frac{k *(k - 1)}{2})\)

可以从祖先中选一个小号

\(f_{u,j+1, k}<=f_{u,j,k}\)

可以从祖先中选两个小号(因为在祖先中需要选择两次,避免重复计算这里除以2)

\(f_{u,j+2,k}<=f_{u,j,k}*\frac{1}{2}\)

可以从祖先选一个子树选一个

\(f_{u,j+1,k-1}<=f_{u,j,k}*k\)

这里我们考虑等价选择的多种方案的时候只在深度浅的地方算

然后实际上如果是小号节点,同理就好了


#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
const int Mod = 1e9 + 7;
const int CHARSET_SIZE = 26; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} struct Node {
int ch[CHARSET_SIZE], typ;
void init() {
typ = 0;
memset(ch, 0, sizeof(ch));
}
} p[N]; int tot = 0, n, m;
char c[N];
int f[N][12][22], g[N][12][22]; void init() {
tot = 1;
p[1].init();
} void insert(char *s, int typ) {
int len = strlen(s + 1), u = 1;
for (int i = 1; i <= len; i++) {
int cur = s[i] - 'a';
if (!p[u].ch[cur])
p[p[u].ch[cur] = ++tot].init();
u = p[u].ch[cur];
}
p[u].typ = typ;
} void dfs(int u) {
for (int i = 0; i <= 10; i++)
for (int j = 0; j <= 20; j++)
f[u][i][j] = g[u][i][j] = 0;
f[u][0][0] = 1;
for (int i = 0; i < CHARSET_SIZE; i++) {
int v = p[u].ch[i];
if (!v) continue;
dfs(v);
for (int j = 10; j >= 0; j--)
for (int k = 20; k >= 0; k--) if (f[u][j][k])
for (int l = 0; l <= 10 - j; l++)
for (int t = 0; t <= 20 - k; t++)
g[u][j + l][k + t] = add(g[u][j + l][k + t], mul(f[u][j][k], f[v][l][t]));
for (int j = 0; j <= 10; j++)
for (int k = 0; k <= 20; k++) {
f[u][j][k] = g[u][j][k];
g[u][j][k] = 0;
}
}
if (!p[u].typ) return;
for (int i = 0; i <= 10; i++) {
for (int j = 0; j <= 20; j++) if (f[u][i][j]) {
if (p[u].typ == 1) {
if (i + 1 <= 10)
g[u][i + 1][j] = add(g[u][i + 1][j], f[u][i][j]);
if (j - 1 >= 0)
g[u][i][j - 1] = add(g[u][i][j - 1], mul(j, f[u][i][j]));
if (i + 2 <= 10)
g[u][i + 2][j] = add(g[u][i + 2][j], mul((Mod + 1) >> 1, f[u][i][j]));
if (j - 2 >= 0)
g[u][i][j - 2] = add(g[u][i][j - 2], mul((j * (j - 1)) >> 1, f[u][i][j]));
if (i + 1 <= 10 && j - 1 >= 0)
g[u][i + 1][j - 1] = add(g[u][i + 1][j - 1], mul(j, f[u][i][j]));
} else {
if (i - 1 >= 0)
g[u][i - 1][j] = add(g[u][i - 1][j], mul(i, f[u][i][j]));
if (j + 1 <= 20)
g[u][i][j + 1] = add(g[u][i][j + 1], f[u][i][j]);
}
}
}
for (int i = 0; i <= 10; i++)
for (int j = 0; j <= 20; j++)
f[u][i][j] = add(f[u][i][j], g[u][i][j]);
} void solve(int cas) {
init();
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%s", c + 1);
insert(c, 1);
}
for (int i = 1; i <= m; i++) {
scanf("%s", c + 1);
insert(c, 2);
}
dfs(1);
printf("Case #%d: %d\n", cas, f[1][0][0]);
} int main() {
int T; scanf("%d", &T);
for (int i = 1; i <= T; i++)
solve(i);
return 0;
}

Codeforces gym101955 A【树形dp】的更多相关文章

  1. Codeforces Round #474-E(树形dp)

    一.题目链接 http://codeforces.com/contest/960/problem/B 二.题意 给定一棵$N$个节点的树,每个节点的权值$V$.定义树中两点$u_1$和$u_m$的权值 ...

  2. Choosing Capital for Treeland CodeForces - 219D (树形DP)

    传送门 The country Treeland consists of n cities, some pairs of them are connected with unidirectional  ...

  3. Codeforces 431C - k-Tree - [树形DP]

    题目链接:https://codeforces.com/problemset/problem/431/C 题意: 定义一个 $k$ 树,即所有节点都有 $k$ 个儿子节点,相应的这 $k$ 条边的权重 ...

  4. Codeforces 161D(树形dp)

    \(dp[v][k]\)代表以\(v\)的子树为起点,以点\(v\)为终点长度为\(k\)的方案有多少种. 转移只需将子树加和:计算\(ans\)由两部分组成,一是\(dp[v][k]\),另一部分是 ...

  5. Codeforces 709E. Centroids 树形DP

    题目链接:http://codeforces.com/contest/709/problem/E 题意: 给你一棵树,你可以任删一条边和加一条边,只要使得其仍然是一棵树,输出每个点是否都能成为重心 题 ...

  6. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  7. Codeforces 743D:Chloe and pleasant prizes(树形DP)

    http://codeforces.com/problemset/problem/743/D 题意:求最大两个的不相交子树的点权和,如果没有两个不相交子树,那么输出Impossible. 思路:之前好 ...

  8. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  9. codeforces 337D Book of Evil (树形dp)

    题目链接:http://codeforces.com/problemset/problem/337/D 参考博客:http://www.cnblogs.com/chanme/p/3265913 题目大 ...

  10. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

随机推荐

  1. Spring Boot入门——文件上传与下载

    1.在pom.xml文件中添加依赖 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht ...

  2. java后台校验 hibernate validator

    链接 : https://www.cnblogs.com/softidea/p/6044123.html

  3. WPF 元素的查找

    预设置元素名字 WPF有两种方式设置元素的Name <StackPanel x:Name="panel"> <Label Name="name1&quo ...

  4. 新概念 Lesson 2 Sorry, sir.

    Is this your handbag? 这是你的手提包吗? Yes,it is. /No it isn't 人称代词的主格宾格 形容性物主代词的用法 Does the man get his um ...

  5. 12月14日 bs-grid , destroy_all()

    bootstrap Grid : The Bs grid system has four classes: xs (phones), sm (tablets), md (desktops), and ...

  6. poj2417 Discrete Logging BSGS裸题

    给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1< ...

  7. char,varchar与text类型的区别和选用

    (1)char: 它是定长格式的,但是长度范围是0~255. 当你想要储存一个长度不足255的字符时,mysql会用空格来填充剩下的字符.因此在读取数据时,char类型的数据要进行处理,把后面的空格去 ...

  8. js实现个链表吧

    存储多个元素,最常用的数据结构是数组.但是数组有个一缺点,从数组中添加或移除项的成本很高,因为需要移动元素.链表也可以存储有序的元素集合,但是和数组不同,链表中的元素在内存中不是连续放置的.每个元素存 ...

  9. python dict sorted 排序

    https://www.cnblogs.com/linyawen/archive/2012/03/15/2398292.html 我们知道Python的内置dictionary数据类型是无序的,通过k ...

  10. HeadFirstJava

    java执行过程的来龙去脉 源代码——编译器——输出——java虚拟机 扩展名为.java ——扩展名为.class 不要直接用类名点变量来改变属性值,一般都用get.set方法.封装的基本原则:将你 ...