LINK


有n个大号和m个小号

然后需要对这些号进行匹配,一个大号最多匹配2个小号

匹配条件是大号和小号构成了前缀关系

字符串长度不超过10

问方案数


思路

因为要构成前缀关系

所以就考虑在trie树上dp

\(f_{i,j,k}\)表示i的子树中,还需要来自祖先的j个小号,并且有需要匹配但是没有匹配的小号k个

然后如果当前是一个大号节点

可以从子树中选一个小号

\(f_{u,j,k - 1}<=f_{v,j,k} * k\)

可以从子树中选两个小号

\(f_{u,j,k - 2}<=f_{v,j,k} * (\frac{k *(k - 1)}{2})\)

可以从祖先中选一个小号

\(f_{u,j+1, k}<=f_{u,j,k}\)

可以从祖先中选两个小号(因为在祖先中需要选择两次,避免重复计算这里除以2)

\(f_{u,j+2,k}<=f_{u,j,k}*\frac{1}{2}\)

可以从祖先选一个子树选一个

\(f_{u,j+1,k-1}<=f_{u,j,k}*k\)

这里我们考虑等价选择的多种方案的时候只在深度浅的地方算

然后实际上如果是小号节点,同理就好了


#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
const int Mod = 1e9 + 7;
const int CHARSET_SIZE = 26; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} struct Node {
int ch[CHARSET_SIZE], typ;
void init() {
typ = 0;
memset(ch, 0, sizeof(ch));
}
} p[N]; int tot = 0, n, m;
char c[N];
int f[N][12][22], g[N][12][22]; void init() {
tot = 1;
p[1].init();
} void insert(char *s, int typ) {
int len = strlen(s + 1), u = 1;
for (int i = 1; i <= len; i++) {
int cur = s[i] - 'a';
if (!p[u].ch[cur])
p[p[u].ch[cur] = ++tot].init();
u = p[u].ch[cur];
}
p[u].typ = typ;
} void dfs(int u) {
for (int i = 0; i <= 10; i++)
for (int j = 0; j <= 20; j++)
f[u][i][j] = g[u][i][j] = 0;
f[u][0][0] = 1;
for (int i = 0; i < CHARSET_SIZE; i++) {
int v = p[u].ch[i];
if (!v) continue;
dfs(v);
for (int j = 10; j >= 0; j--)
for (int k = 20; k >= 0; k--) if (f[u][j][k])
for (int l = 0; l <= 10 - j; l++)
for (int t = 0; t <= 20 - k; t++)
g[u][j + l][k + t] = add(g[u][j + l][k + t], mul(f[u][j][k], f[v][l][t]));
for (int j = 0; j <= 10; j++)
for (int k = 0; k <= 20; k++) {
f[u][j][k] = g[u][j][k];
g[u][j][k] = 0;
}
}
if (!p[u].typ) return;
for (int i = 0; i <= 10; i++) {
for (int j = 0; j <= 20; j++) if (f[u][i][j]) {
if (p[u].typ == 1) {
if (i + 1 <= 10)
g[u][i + 1][j] = add(g[u][i + 1][j], f[u][i][j]);
if (j - 1 >= 0)
g[u][i][j - 1] = add(g[u][i][j - 1], mul(j, f[u][i][j]));
if (i + 2 <= 10)
g[u][i + 2][j] = add(g[u][i + 2][j], mul((Mod + 1) >> 1, f[u][i][j]));
if (j - 2 >= 0)
g[u][i][j - 2] = add(g[u][i][j - 2], mul((j * (j - 1)) >> 1, f[u][i][j]));
if (i + 1 <= 10 && j - 1 >= 0)
g[u][i + 1][j - 1] = add(g[u][i + 1][j - 1], mul(j, f[u][i][j]));
} else {
if (i - 1 >= 0)
g[u][i - 1][j] = add(g[u][i - 1][j], mul(i, f[u][i][j]));
if (j + 1 <= 20)
g[u][i][j + 1] = add(g[u][i][j + 1], f[u][i][j]);
}
}
}
for (int i = 0; i <= 10; i++)
for (int j = 0; j <= 20; j++)
f[u][i][j] = add(f[u][i][j], g[u][i][j]);
} void solve(int cas) {
init();
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%s", c + 1);
insert(c, 1);
}
for (int i = 1; i <= m; i++) {
scanf("%s", c + 1);
insert(c, 2);
}
dfs(1);
printf("Case #%d: %d\n", cas, f[1][0][0]);
} int main() {
int T; scanf("%d", &T);
for (int i = 1; i <= T; i++)
solve(i);
return 0;
}

Codeforces gym101955 A【树形dp】的更多相关文章

  1. Codeforces Round #474-E(树形dp)

    一.题目链接 http://codeforces.com/contest/960/problem/B 二.题意 给定一棵$N$个节点的树,每个节点的权值$V$.定义树中两点$u_1$和$u_m$的权值 ...

  2. Choosing Capital for Treeland CodeForces - 219D (树形DP)

    传送门 The country Treeland consists of n cities, some pairs of them are connected with unidirectional  ...

  3. Codeforces 431C - k-Tree - [树形DP]

    题目链接:https://codeforces.com/problemset/problem/431/C 题意: 定义一个 $k$ 树,即所有节点都有 $k$ 个儿子节点,相应的这 $k$ 条边的权重 ...

  4. Codeforces 161D(树形dp)

    \(dp[v][k]\)代表以\(v\)的子树为起点,以点\(v\)为终点长度为\(k\)的方案有多少种. 转移只需将子树加和:计算\(ans\)由两部分组成,一是\(dp[v][k]\),另一部分是 ...

  5. Codeforces 709E. Centroids 树形DP

    题目链接:http://codeforces.com/contest/709/problem/E 题意: 给你一棵树,你可以任删一条边和加一条边,只要使得其仍然是一棵树,输出每个点是否都能成为重心 题 ...

  6. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  7. Codeforces 743D:Chloe and pleasant prizes(树形DP)

    http://codeforces.com/problemset/problem/743/D 题意:求最大两个的不相交子树的点权和,如果没有两个不相交子树,那么输出Impossible. 思路:之前好 ...

  8. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  9. codeforces 337D Book of Evil (树形dp)

    题目链接:http://codeforces.com/problemset/problem/337/D 参考博客:http://www.cnblogs.com/chanme/p/3265913 题目大 ...

  10. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

随机推荐

  1. Android JNI(一)——NDK与JNI基础

    本系列文章如下: Android JNI(一)——NDK与JNI基础 Android JNI学习(二)——实战JNI之“hello world” Android JNI学习(三)——Java与Nati ...

  2. Cocoapods 报警告Automatically assigning platform ios with version 9.0 on target....

    Automatically assigning platform iOS with version 9.0 on target 你的工程名称 because no platform was speci ...

  3. Codeforces 894B - Ralph And His Magic Field

    894B - Ralph And His Magic Field 思路: 当k为1时,如果n和m奇偶性不同,那么没有答案. 可以证明,在其他情况下有答案,且答案为2^(n-1)*(m-1),因为前n- ...

  4. Java数组的定义和使用

    如果希望保存一组有相同类型的数据,可以使用数组. 数组的定义和内存分配 Java 中定义数组的语法有两种: type arrayName[]; type[] arrayName; type 为Java ...

  5. codeforces 484a//Bits// Codeforces Round #276(Div. 1)

    题意:给出区间[ll,rr],求中间一个数二进制表示时一的个数最多. 写出ll和rr的二进制,设出现第一个不同的位置为pos(从高位到低位),找的数为x,那么为了使x在[ll,rr]内,前pos-1个 ...

  6. Android Studio apk打包,keystore.jks文件生成,根据keystore密钥获取SHA1安全码

    keystore.jks文件生成,打包APK 选择Build > Generate Signed APK 出现如下弹框: 然后点击Create new...(创建的意思)出现另一个弹框,在做如下 ...

  7. Oracle性能诊断艺术-读书笔记(脚本execution_plans截图)

  8. dp练习(7)—— 最小和

    3415 最小和 CodeVS原创  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 青铜 Bronze 题解       题目描述 Description 小浣熊松松来到文具店, ...

  9. dp入门求最大公共子序列

    #include "bits/stdc++.h" using namespace std; ],b[]; ][]; int main() { cin >> a > ...

  10. 根据服务端生成的WSDL文件创建客户端支持代码的三种方式

    第一种:使用wsimport是JDK自带的工具,来生成 生成java客户端代码常使用的命令参数说明: 参数 说明 -p 定义客户端生成类的包名称 -s 指定客户端执行类的源文件存放目录 -d 指定客户 ...