Sum of Consecutive Prime Numbers

http://poj.org/problem?id=2739

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 28929   Accepted: 15525

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2

Source

 #include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<queue>
#include<stack>
#define PI acos(-1.0)
#define eps 1e-9
using namespace std;
int prime[];//存素数
bool vis[];//保证不做素数的倍数
void dabiao(int n){
int cnt = ;
memset(vis, false, sizeof(vis));//初始化
memset(prime, , sizeof(prime));
for(int i = ; i <= n; i++)
{
if(!vis[i])//不是目前找到的素数的倍数
prime[cnt++] = i;//找到素数~
for(int j = ; j<cnt && i*prime[j]<=n; j++)
{
vis[i*prime[j]] = true;//找到的素数的倍数不访问
if(i % prime[j] == ) break;//关键!!!!
}
}
} int main(){ dabiao();
int n;
while(~scanf("%d",&n)){
if(!n) break;
int L=,R=;
int ans=;
int sum=;
int pos=upper_bound(prime,prime+,n)-prime;
while(L<=R){ if(ans<=n&&R<pos){
ans+=prime[R++];
}
else if(ans>n||R==pos){
ans-=prime[L++];
}
if(ans==n){
sum++;
}
}
printf("%d\n",sum);
} }

Sum of Consecutive Prime Numbers的更多相关文章

  1. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  2. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  3. POJ2739 Sum of Consecutive Prime Numbers(尺取法)

    POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...

  4. POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25225 ...

  5. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

  6. POJ.2739 Sum of Consecutive Prime Numbers(水)

    POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...

  7. poj 2379 Sum of Consecutive Prime Numbers

                                                                                                        ...

  8. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  9. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

随机推荐

  1. js字符串转换成数字,数字转换成字符串

    转自网络,忘记出处了. js字符串转换成数字 将字符串转换成数字,得用到parseInt函数. parseInt(string) : 函数从string的开始解析,返回一个整数. 举例:parseIn ...

  2. 在VM克隆CENTOS以后,网卡的处理过程

    会发现克隆CENTOS以后,网卡eth0无法启动.处理步骤如下:1. vi /etc/sysconfig/network-scripts/ifcfg-eth0删除HWADDR地址那行删除UUID的那行 ...

  3. [UE4]有限状态机、动画状态机、纯函数

    有限状态机 FSM:Finite State Machine,表示有限个状态以及在这些状态之间转移和动作的数学模型 纯函数: 纯函数: 先后调用顺序不重要,没有修改任何数值,只是获取数值或者临时计算一 ...

  4. [UE4]为UStaticMeshComponent添加点击事件

    BlockMesh->OnClicked.AddDynamic(this, &APuzzleBlock::BlockClicked); //鼠标点击事件 BlockMesh->On ...

  5. 6.26-EL表达式,JSTL标签

    一.EL表达式 功能: 替代jsp中数据访问时的复杂java代码 语法: ${表达式} ${(5+9)*2} 访问顺序: page--->request--->session---> ...

  6. 对象DIY

    1.在java开发中,好代码都是组织的比较好,模拟现实很好,而不是步骤指令 2.对象组织+继承(归类

  7. CSS Web安全字体组合

    常用的字体组合 font-family属性是多种字体的名称,作为一个"应变"制度,以确保浏览器/操作系统之间的最大兼容性.如果浏览器不支持的第一个字体,它尝试下一个的字体. 你想要 ...

  8. pycharm下getpass.getpass()卡住

    pycharm下getpass.getpass()卡住不运行是什么问题 python pycharm 首先声明 下面这几行代码在命令行和eclipse下都能正常运行 import getpass pr ...

  9. Hive环境的安装部署(完美安装)(集群内或集群外都适用)(含卸载自带mysql安装指定版本)

    Hive环境的安装部署(完美安装)(集群内或集群外都适用)(含卸载自带mysql安装指定版本) Hive 安装依赖 Hadoop 的集群,它是运行在 Hadoop 的基础上. 所以在安装 Hive 之 ...

  10. ACM MM | 中山大学等提出HSE:基于层次语义嵌入模型的精细化物体分类

    细粒度识别一般需要模型识别非常精细的子类别,它基本上就是同时使用图像全局信息和局部信息的分类任务.在本论文中,研究者们提出了一种新型层次语义框架,其自顶向下地由全局图像关注局部特征或更具判别性的区域. ...