tensorflow拟合随机生成的三维数据【学习笔记】
平台信息:
PC:ubuntu18.04、i5、anaconda2、cuda9.0、cudnn7.0.5、tensorflow1.10、GTX1060
作者:庄泽彬(欢迎转载,请注明作者)
说明:感谢tensorflow社区,本文是在社区的学习笔记,生成随机的三维数据,之后用平面去拟合。
相关代码:
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 11 19:54:15 2018 @author: zhuang
""" import tensorflow as tf
import numpy as np #生成随机数
x_data = np.float32(np.random.rand(2,100))
y_data = np.dot([0.100,0.200],x_data) + 0.300 # 初始化参数
b = tf.Variable(tf.zeros([1]))
# w为1x2的矩阵,在-1.0到1.0之间均匀分布
w = tf.Variable(tf.random_uniform([1,2],-1.0,1.0))
y = tf.matmul(w,x_data) + b # 使用最小化方差进行梯度下降,来不断更新参数,学习率设置为0.5
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss) #init = tf.initialize_all_variables()
#新版本的tensorflow使用下面的接口,老版本使用上面的接口
init = tf.global_variables_initializer() sess = tf.Session()
sess.run(init) #进行拟合找到适合的参数
for step in xrange(0,201):
sess.run(train)
if (step) % 20 == 0:
print step,sess.run(w),sess.run(b)
实验结果:
runfile('/home/zhuang/project/1-AI/My_AI_Study_Project/3-tensorflow/005-test.py', wdir='/home/zhuang/project/1-AI/My_AI_Study_Project/3-tensorflow')
0 [[0.39894426 0.3333286 ]] [0.14586714]
20 [[0.16806586 0.26403958]] [0.22699882]
40 [[0.12101775 0.22725435]] [0.27309927]
60 [[0.10728491 0.21063562]] [0.28998315]
80 [[0.10265137 0.20403926]] [0.2962562]
100 [[0.10098286 0.20152006]] [0.29859895]
120 [[0.10036676 0.20057023]] [0.29947543]
140 [[0.10013718 0.20021366]] [0.29980358]
160 [[0.10005137 0.20008004]] [0.29992643]
180 [[0.10001925 0.20002998]] [0.29997244]
200 [[0.10000721 0.20001122]] [0.29998967]
我们的目标方程y_data = np.dot([0.100,0.200],x_data) + 0.300,经过200次的训练更新w,b参数为[[0.10000721 0.20001122]] [0.29998967],非常接近我们方程的参数。
tensorflow拟合随机生成的三维数据【学习笔记】的更多相关文章
- JS随机生成不重复数据的代码分享
JS随机生成不重复数据. 代码如下: <script> // 定义存放生成随机数的数组 var array=new Array(); // 循环N次生成随机数 for(var i = 0 ...
- fabric私密数据学习笔记
fabric私密数据学习笔记 私密数据分为两部分 一个是真正的key,value,它被存在 peer的私密数据库(private state)中. 另一部分为公共数据,它是真实的私密数据key,val ...
- 大数据学习笔记——Linux完整部署篇(实操部分)
Linux环境搭建完整操作流程(包含mysql的安装步骤) 从现在开始,就正式进入到大数据学习的前置工作了,即Linux的学习以及安装,作为运行大数据框架的基础环境,Linux操作系统的重要性自然不言 ...
- 大数据学习笔记——Java篇之IO
IO学习笔记整理 1. File类 1.1 File对象的三种创建方式: File对象是一个抽象的概念,只有被创建出来之后,文件或文件夹才会真正存在 注意:File对象想要创建成功,它的目录必须存在! ...
- 大数据学习笔记——Hadoop编程实战之HDFS
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程 ...
- 大数据学习笔记——Linux基本知识及指令(理论部分)
Linux学习笔记整理 上一篇博客中,我们详细地整理了如何从0部署一套Linux操作系统,那么这一篇就承接上篇文章,我们仔细地把Linux的一些基础知识以及常用指令(包括一小部分高级命令)做一个梳理, ...
- 大数据学习笔记——Java篇之网络编程基础
Java网络编程学习笔记 1. 网络编程基础知识 1.1 网络分层图 网络分层分为两种模型:OSI模型以及TCP/IP网络模型,前者模型分为7层,是一个理论的,参考的模型:后者为实际应用的模型,具体对 ...
- 大数据学习笔记——Java篇之集合框架(ArrayList)
Java集合框架学习笔记 1. Java集合框架中各接口或子类的继承以及实现关系图: 2. 数组和集合类的区别整理: 数组: 1. 长度是固定的 2. 既可以存放基本数据类型又可以存放引用数据类型 3 ...
- 使用Faker来随机生成接近真实数据的数据
在很多场景我们需要造一些假数据或者mock数据,如果我们写死类似[XXXX]类似的无意义的其实不是很优雅,Faker能提供常用的一些名词的随机数据. 1.引入POM: <dependency&g ...
随机推荐
- 《MYSQL必知必会》
1. 同一个数据库中不允许出现同名表:不同的数据库中可以出现同名表2. 每一行记录都用有一个key(一列或一组列作为key)3. 作为key的列不允许值为空(NULL)4. 多个列作为key时,多个列 ...
- html中label及加上属性for之后的用法
定义和用法 <label> 标签为 input 元素定义标签(label). label 元素不会向用户呈现任何特殊的样式.不过,它为鼠标用户改善了可用性,因为如果用户点击 label 元 ...
- Loadrnner 参数化策略
参数化策略 关键:类型+数据+策略 1.Select next row ( 如何取) 选择下一行 1)Sequential:顺序的 每个VU都从第一行开始,顺序依次向下取值:数据可以循环重复使用:-- ...
- 后缀名htm与html的区别
前者是超文本标记(Hypertext Markup) 后者是超文本标记语言(Hypertext Markup Language) 可以说 htm = html 同时,这两种都是静态网页文件的扩展名,扩 ...
- ubuntu,windows 卸载安装mysql
首先删除mysql: sudo apt-get remove mysql-* 1 然后清理残留的数据 dpkg -l |grep ^rc|awk '{print $2}' |sudo xargs dp ...
- (转)Elasticsearch查询规则------match和term
es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...
- POJ:3083 Children of the Candy Corn(bfs+dfs)
http://poj.org/problem?id=3083 Description The cornfield maze is a popular Halloween treat. Visitors ...
- 去掉python的警告
1.常规警告 import warnings warnings.filterwarnings("ignore") 2.安装gensim,在python中导入的时候出现一个警告: w ...
- jquery.lazyload 使用
1.引用js <script src="jquery.js" type="text/javascript"></script> < ...
- lambda函数和map函数
lambda函数,简化了函数定义的书写形式,使代码更为简洁,但是使用自定义函数的定义方式更为直观,易理解 g = lambda x:x+1 #上面的lambda表达式相当于下面的自定义函数 def g ...