使用dropna()函数去掉NaN的行或列

import pandas as pd
import pickle
import numpy as np
dates = pd.date_range('', periods=)
df = pd.DataFrame(np.arange().reshape((,)), index=dates, columns=['A', 'B', 'C', 'D'])
df.iloc[,]=np.nan
df.iloc[,]=np.nan
print(df)
print(df.dropna(axis=,how='any'))

输出:

             A     B     C   D
-- NaN 2.0
-- 5.0 NaN
-- 9.0 10.0
-- 13.0 14.0
-- 17.0 18.0
-- 21.0 22.0
A B C D
-- 9.0 10.0
-- 13.0 14.0
-- 17.0 18.0
-- 21.0 22.0

使用fillna()函数替换NaN值

import pandas as pd
import pickle
import numpy as np
dates = pd.date_range('', periods=)
df = pd.DataFrame(np.arange().reshape((,)), index=dates, columns=['A', 'B', 'C', 'D'])
df.iloc[,]=np.nan
df.iloc[,]=np.nan
print(df)
#将NaN值替换为0
print(df.fillna(value=))

输出

             A     B     C   D
-- NaN 2.0
-- 5.0 NaN
-- 9.0 10.0
-- 13.0 14.0
-- 17.0 18.0
-- 21.0 22.0
A B C D
-- 0.0 2.0
-- 5.0 0.0
-- 9.0 10.0
-- 13.0 14.0
-- 17.0 18.0
-- 21.0 22.0

使用isnull()函数判断数据是否丢失

import pandas as pd
import pickle
import numpy as np
dates = pd.date_range('', periods=)
df = pd.DataFrame(np.arange().reshape((,)), index=dates, columns=['A', 'B', 'C', 'D'])
df.iloc[,]=np.nan
df.iloc[,]=np.nan
print(df)
#矩阵用布尔来进行表示 是nan为ture 不是nan为false
print(pd.isnull(df))

输出

             A     B     C   D
-- NaN 2.0
-- 5.0 NaN
-- 9.0 10.0
-- 13.0 14.0
-- 17.0 18.0
-- 21.0 22.0
A B C D
-- False True False False
-- False False True False
-- False False False False
-- False False False False
-- False False False False
-- False False False False

#判断数据中是否会存在NaN值

import pandas as pd
import pickle
import numpy as np
dates = pd.date_range('', periods=)
df = pd.DataFrame(np.arange().reshape((,)), index=dates, columns=['A', 'B', 'C', 'D'])
df.iloc[,]=np.nan
df.iloc[,]=np.nan
print(df)
#判断数据中是否会存在NaN值
print(np.any(df.isnull()))

输出

             A     B     C   D
-- NaN 2.0
-- 5.0 NaN
-- 9.0 10.0
-- 13.0 14.0
-- 17.0 18.0
-- 21.0 22.0
True

pandas 处理数据中NaN数据的更多相关文章

  1. 返回数据中提取数据的方法(JSON数据取其中某一个值的方法)

    返回数据中提取数据的方法 比如下面的案例是,取店铺名称 接口返回数据如下: {"Code":0,"Msg":"ok","Data& ...

  2. 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

    1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...

  3. pandas实现excel中的数据透视表和Vlookup函数功能

    在孩子王实习中做的一个小工作,方便整理数据. 目前这几行代码是实现了一个数据透视表和匹配的功能,但是将做好的结果写入了不同的excel中, 如何实现将结果连续保存到同一个Excel的同一个工作表中?还 ...

  4. pandas读取excel中指定数据的行数

    shuju = pd.read_excel(filename) loandata = pd.DataFrame(shuju) ncol = (len(loandata.keys())) data = ...

  5. java中如何从一行数据中读取数据

    目录 @(如何从一行数据中切割数据) 例如我要从一行学生信息中分割出学号.姓名.年龄.学历等等 ==主要使用split方法,split方法在API中定义如下:== public String[] sp ...

  6. JSP页面读取数据中的数据内容,出现乱码现象的解决方法

    1.首先要确保JSP页面的编码已修改为“utf-8”的字符编码: 2.然后再在jsp页面上添加代码进行设置: 先用getBytes()方法读出数据,然后再new String()方法设置格式为“utf ...

  7. python 导出mongoDB数据中的数据

    import pymongo,urllibimport sysimport timeimport datetimereload(sys)sys.setdefaultencoding('utf8')fr ...

  8. 其它课程中的python---5、Pandas处理数据和读取数据

    其它课程中的python---5.Pandas处理数据和读取数据 一.总结 一句话总结: 记常用和特例:慢慢慢慢的就熟了,不用太着急,慢慢来 库的使用都很简单:就是库的常用函数就这几个,后面用的时候学 ...

  9. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

随机推荐

  1. 使用fiddler对手机APP进行抓包

    在做手机或移动端APP的接口测试时,需要从开发人员那里获取接口文档,接口文档应该包括完整的功能接口.接口请求方式.接口请求URL.接口请求参数.接口返回参数.如果当前项目没有接口文档,则可以使用fid ...

  2. php分层

    表示层         UI      主要表示WEB方式,也可以表示成WINFORM方式.如果逻辑层相当强大和完善,无论表现层如何定义和更改,逻辑层都能完善地提供服务. 业务逻辑层  BLL     ...

  3. C# 如何把dataTable以参数的形式传入 sql 存储过程

    ==================================================-- sql代码 示例:CREATE TYPE dbo.Content AS TABLE( ID i ...

  4. mysql的count方法详解

    1.cout(*)会统计为null的行: 2.count(列名)不会统计此列null值的行: 3.count(distinct col)计算该列除null之外的不重复数量:

  5. python yield yield from

    1.可迭代对象 具备可迭代的能力,即enumerable,在python中指的是可以通过for-in去逐个访问元素的一些对象,比如元组tuple,列表list,字符串string,文件对象file等. ...

  6. oracle_存储过程小记

    # 刷新会员标签函数 {color:red} fun_refresh_code{color} {noformat}CREATE OR REPLACE FUNCTION fun_refresh_code ...

  7. 访问Hsql .data数据库文件

    一.Hsql简介: hsql数据库是一款纯Java编写的免费数据库,许可是BSD-style的协议. 仅一个hsqldb.jar文件就包括了数据库引擎,数据库驱动,还有其他用户界面操作等内容.下载地址 ...

  8. 保护Hadoop集群三大方法

    自今年以来,不少恶意软件开始频繁向Hadoop集群服务器下手,受影响最大的莫过于连接到互联网且没有启用安全防护的Hadoop集群. 大约在两年前,开源数据库解决方案MongoDB以及Hadoop曾遭受 ...

  9. 俞敏洪:未来教育是互联网+ AI +区块链联合颠覆

    “我对面向未来教育领域,内心是有一丝悲哀的.至少在我思考和理解的范围内,互联网和 AI 是不是有可能彻底的改变中国教育现状?我没有想清楚.”10 月 31 日,在鲸媒体举办的以“教育 +AI”为的主题 ...

  10. ORM 关系对象映射 基础知识点

    优点: 1.ORM使我们通用的数据库变得更加的简单便捷. 2.可避免新手程序员写sql语句带来的性能问题. 1. 创建单表 2. 创建关键表 1). 一对一 2). 一对多 3). 多对多 创建表的语 ...