poj 3046 Ant Counting(多重集组合数)
Ant Counting
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 3 Accepted Submission(s) : 2
Being a
bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1
<= T <= 1,000) families of ants which she labeled 1..T (A ants
altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.
How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can
be formed?
While observing one group, the set of three ant families was
seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of
marching ants were:
3 sets with 1 ant: {1} {2} {3}
5 sets with 2
ants: {1,1} {1,2} {1,3} {2,2} {2,3}
5 sets with 3 ants: {1,1,2} {1,1,3}
{1,2,2} {1,2,3} {2,2,3}
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}
1 set with 5 ants: {1,1,2,2,3}
Your job is to count the number of
possible sets of ants given the data above.
<br> <br>* Lines 2..A+1: Each line contains a single integer that is
an ant type present in the hive
that can be created. A set like {1,2} is the same as the set {2,1} and should
not be double-counted. Print only the LAST SIX DIGITS of this number, with no
leading zeroes or spaces.
1
2
2
1
3
分析:
多重集组合数也是由多重背包问题拓展出来的一类经典问题。这里仍然给大家讲2种方法:
①朴素方法:
状态:dp[i][j]:前i种中选j个可以组成的种数
决策:第i种选k个,k<=ant[i] && j-k>=0
转移:dp[i][j]=Σdp[i-1][j-k]
复杂度为O(B*Σant[i])即O(B*A)也即O(A^2),虽说这题A最大可到1e5,但是实际数据水,能过
②优化递推式
状态:dp[i][j]:前i种中选j个可以组成的种数
决策:第i种不选或者至少选一个
转移:
1.若不选,显然为dp[i-1][j]
2.若至少选一种,那么为dp[i][j-1]-dp[i-1][j-ant[i]-1]
我们这样来理解,dp[i][j-1] 理解为已经选了第i种一个,至于还选不选这里我们不管它,所以它可以用来代表至少选一个
但是dp[i][j-1]还有一层含义便是前i种中选j-1个可以组成的种数,所以它包含了选ant[i]个第i种,即dp[i-1][j-ant[i]-1],但
dp[i][j] 最多选ant[i]个第i种,所以最后要减去这一种。
所以 dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-ant[i]-1]
复杂度为O(T*B)
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int mod = ;
int dp[][];
int main()
{
int ant[];
int t, a, s, b;
cin >> t >> a >> s >> b;
memset(ant, , sizeof(ant));
int i;
int j;
for (i = ; i <= a; i++)
{
cin >> j;
ant[j]++;
}
for (i = ; i <= t; i++) dp[i][] = ;
dp[][] = dp[][] = ;
for (i = ; i <= t; i++)
{
for (j = ; j <= b; j++)
{
if (j - ant[i] - >= )
{//在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
dp[i][j] = (dp[i - ][j] + dp[i ][j - ] - dp[i - ][j - ant[i] - ] + mod) % mod;
}
else
{
dp[i][j] = (dp[i - ][j] + dp[i][j - ])%mod;
}
}
}
int sum = ;
for (i = s; i <= b; i++)
sum = (sum + dp[t][i]) % mod;
cout << sum << endl;
return ;
}
为了节约空间%2;
#include<iostream>
using namespace std;
#define MOD 1000000
int T, A, S, B;
int ant[];
int dp[][];
int ans;
int main()
{
scanf("%d%d%d%d", &T, &A, &S, &B);
for (int i = ; i <= A; i++)
{
int aa;
scanf("%d", &aa);
ant[aa]++;
}
dp[][] = dp[][] = ;
for (int i = ; i <= T; i++)
for (int j = ; j <= B; j++)
if (j - ant[i] - >= ) dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ] - dp[(i - ) % ][j - ant[i] - ] + MOD) % MOD; //在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
else dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ]) % MOD;
for (int i = S; i <= B; i++)
ans = (ans + dp[T % ][i]) % MOD;
printf("%d\n", ans);
return ;
}
poj 3046 Ant Counting(多重集组合数)的更多相关文章
- POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )
题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 : ...
- poj3046 Ant Counting——多重集组合数
题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...
- poj 3046 Ant Counting
Ant Counting Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4982 Accepted: 1896 Desc ...
- poj 3046 Ant Counting (DP多重背包变形)
题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...
- poj 3046 Ant Counting——多重集合的背包
题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...
- POJ 3046 Ant Counting DP
大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...
- POJ 3046 Ant Counting(递推,和号优化)
计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...
- 【POJ - 3046】Ant Counting(多重集组合数)
Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...
- POJ_3046_Ant_Counting_(动态规划,多重集组合数)
描述 http://poj.org/problem?id=3046 n种蚂蚁,第i种有ai个,不同种类的蚂蚁可以相互区分,但同一种类的蚂蚁不能相互区分,从这些蚂蚁中取出s,s+1,s+2,...,b- ...
随机推荐
- python中read()、readline()、readlnes()
在python中 1.file.read()直接按原样读取文件,它通常用于将文件内容放到一个字符串变量中,如果文件大于可用内存,则不可能实现这种处理,因为原来文件里面是str_class,所以 fil ...
- windows安装redis和php拓展
第一步:下载redis 我是win7的环境,直接到https://github.com/MSOpenTech/redis/releases下载windows版本的redis: 第二步:配置path i ...
- L1-026 I Love GPLT
这道超级简单的题目没有任何输入. 你只需要把这句很重要的话 —— “I Love GPLT”——竖着输出就可以了. 所谓“竖着输出”,是指每个字符占一行(包括空格),即每行只能有1个字符和回车. 输入 ...
- 掌握 javascript 核心概念 最好的教程 系列 之一
链接 新链接 函数优先, 在扫描创建变量阶段, 会先收集函数, 如果前面有同名函数或者变量, 这个新函数会覆盖前面同名的: 而如果这时候是变量, 则不能去覆盖前面已有的值. function test ...
- php property_exists
property_exists("Device",$prop))判断Device 类中是否存在 $prop 这个属性该函数用来判断一个类中是否存在某个属性. 这里分析了php面向对 ...
- parser_url
$url="http://127.0.0.1/test2.php?sitename=mysite.cn&a=1&b=2";$a=parse_url($url);p( ...
- Windows 下python的tab自动补全
方法一:安装一个ipython就OK啦,而且关键字还能高亮显示呢 一.打开cmd,输入pip3 install ipython联网安装 二.安装成功后,cmd里运行ipython,成功啦. 方法二:写 ...
- specified属性
- hdu 5311(暴力)
题意:要求在一个字符串中找出三段,然后能拼成一个固定的单词,问是否可行 BC周年庆第二题,我枚举了那个单词的切断位置,然后到给的字符串里分别找,然后就没有然后了``` #include<stdi ...
- Maps.newHashMapWithExpectedSize(2)
☆ Map<String, Object> diffQuota = Maps.newHashMapWithExpectedSize(2); Maps.newHashMapWithExpec ...