Ant Counting

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 3   Accepted Submission(s) : 2
Problem Description
Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

Being a
bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1
<= T <= 1,000) families of ants which she labeled 1..T (A ants
altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can
be formed?

While observing one group, the set of three ant families was
seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of
marching ants were:

3 sets with 1 ant: {1} {2} {3}
5 sets with 2
ants: {1,1} {1,2} {1,3} {2,2} {2,3}
5 sets with 3 ants: {1,1,2} {1,1,3}
{1,2,2} {1,2,3} {2,2,3}
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}

1 set with 5 ants: {1,1,2,2,3}

Your job is to count the number of
possible sets of ants given the data above.

 
Input
* Line 1: 4 space-separated integers: T, A, S, and B
<br> <br>* Lines 2..A+1: Each line contains a single integer that is
an ant type present in the hive
 
Output
* Line 1: The number of sets of size S..B (inclusive)
that can be created. A set like {1,2} is the same as the set {2,1} and should
not be double-counted. Print only the LAST SIX DIGITS of this number, with no
leading zeroes or spaces.
 
Sample Input
3 5 2 3
1
2
2
1
3
 
Sample Output
10
 

分析:

多重集组合数也是由多重背包问题拓展出来的一类经典问题。这里仍然给大家讲2种方法:

①朴素方法:

状态:dp[i][j]:前i种中选j个可以组成的种数

决策:第i种选k个,k<=ant[i] && j-k>=0

转移:dp[i][j]=Σdp[i-1][j-k]

复杂度为O(B*Σant[i])即O(B*A)也即O(A^2),虽说这题A最大可到1e5,但是实际数据水,能过

②优化递推式

状态:dp[i][j]:前i种中选j个可以组成的种数

决策:第i种不选或者至少选一个

转移:

1.若不选,显然为dp[i-1][j]

2.若至少选一种,那么为dp[i][j-1]-dp[i-1][j-ant[i]-1]

我们这样来理解,dp[i][j-1] 理解为已经选了第i种一个,至于还选不选这里我们不管它,所以它可以用来代表至少选一个

但是dp[i][j-1]还有一层含义便是前i种中选j-1个可以组成的种数,所以它包含了选ant[i]个第i种,即dp[i-1][j-ant[i]-1],但

dp[i][j] 最多选ant[i]个第i种,所以最后要减去这一种。

所以 dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-ant[i]-1]

复杂度为O(T*B)

 #include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int mod = ;
int dp[][];
int main()
{
int ant[];
int t, a, s, b;
cin >> t >> a >> s >> b;
memset(ant, , sizeof(ant));
int i;
int j;
for (i = ; i <= a; i++)
{
cin >> j;
ant[j]++;
}
for (i = ; i <= t; i++) dp[i][] = ;
dp[][] = dp[][] = ;
for (i = ; i <= t; i++)
{
for (j = ; j <= b; j++)
{
if (j - ant[i] - >= )
{//在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
dp[i][j] = (dp[i - ][j] + dp[i ][j - ] - dp[i - ][j - ant[i] - ] + mod) % mod;
}
else
{
dp[i][j] = (dp[i - ][j] + dp[i][j - ])%mod;
}
}
}
int sum = ;
for (i = s; i <= b; i++)
sum = (sum + dp[t][i]) % mod;
cout << sum << endl;
return ;
}

为了节约空间%2;

#include<iostream>
using namespace std;
#define MOD 1000000
int T, A, S, B;
int ant[];
int dp[][];
int ans;
int main()
{
scanf("%d%d%d%d", &T, &A, &S, &B);
for (int i = ; i <= A; i++)
{
int aa;
scanf("%d", &aa);
ant[aa]++;
}
dp[][] = dp[][] = ;
for (int i = ; i <= T; i++)
for (int j = ; j <= B; j++)
if (j - ant[i] - >= ) dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ] - dp[(i - ) % ][j - ant[i] - ] + MOD) % MOD; //在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
else dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ]) % MOD;
for (int i = S; i <= B; i++)
ans = (ans + dp[T % ][i]) % MOD;
printf("%d\n", ans);
return ;
}
 

poj 3046 Ant Counting(多重集组合数)的更多相关文章

  1. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  2. poj3046 Ant Counting——多重集组合数

    题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...

  3. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  4. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  5. poj 3046 Ant Counting——多重集合的背包

    题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...

  6. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  7. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  8. 【POJ - 3046】Ant Counting(多重集组合数)

    Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...

  9. POJ_3046_Ant_Counting_(动态规划,多重集组合数)

    描述 http://poj.org/problem?id=3046 n种蚂蚁,第i种有ai个,不同种类的蚂蚁可以相互区分,但同一种类的蚂蚁不能相互区分,从这些蚂蚁中取出s,s+1,s+2,...,b- ...

随机推荐

  1. python中read()、readline()、readlnes()

    在python中 1.file.read()直接按原样读取文件,它通常用于将文件内容放到一个字符串变量中,如果文件大于可用内存,则不可能实现这种处理,因为原来文件里面是str_class,所以 fil ...

  2. windows安装redis和php拓展

    第一步:下载redis 我是win7的环境,直接到https://github.com/MSOpenTech/redis/releases下载windows版本的redis: 第二步:配置path i ...

  3. L1-026 I Love GPLT

    这道超级简单的题目没有任何输入. 你只需要把这句很重要的话 —— “I Love GPLT”——竖着输出就可以了. 所谓“竖着输出”,是指每个字符占一行(包括空格),即每行只能有1个字符和回车. 输入 ...

  4. 掌握 javascript 核心概念 最好的教程 系列 之一

    链接 新链接 函数优先, 在扫描创建变量阶段, 会先收集函数, 如果前面有同名函数或者变量, 这个新函数会覆盖前面同名的: 而如果这时候是变量, 则不能去覆盖前面已有的值. function test ...

  5. php property_exists

    property_exists("Device",$prop))判断Device 类中是否存在 $prop 这个属性该函数用来判断一个类中是否存在某个属性. 这里分析了php面向对 ...

  6. parser_url

    $url="http://127.0.0.1/test2.php?sitename=mysite.cn&a=1&b=2";$a=parse_url($url);p( ...

  7. Windows 下python的tab自动补全

    方法一:安装一个ipython就OK啦,而且关键字还能高亮显示呢 一.打开cmd,输入pip3 install ipython联网安装 二.安装成功后,cmd里运行ipython,成功啦. 方法二:写 ...

  8. specified属性

  9. hdu 5311(暴力)

    题意:要求在一个字符串中找出三段,然后能拼成一个固定的单词,问是否可行 BC周年庆第二题,我枚举了那个单词的切断位置,然后到给的字符串里分别找,然后就没有然后了``` #include<stdi ...

  10. Maps.newHashMapWithExpectedSize(2)

    ☆ Map<String, Object> diffQuota = Maps.newHashMapWithExpectedSize(2); Maps.newHashMapWithExpec ...