Ant Counting

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 3   Accepted Submission(s) : 2
Problem Description
Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

Being a
bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1
<= T <= 1,000) families of ants which she labeled 1..T (A ants
altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can
be formed?

While observing one group, the set of three ant families was
seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of
marching ants were:

3 sets with 1 ant: {1} {2} {3}
5 sets with 2
ants: {1,1} {1,2} {1,3} {2,2} {2,3}
5 sets with 3 ants: {1,1,2} {1,1,3}
{1,2,2} {1,2,3} {2,2,3}
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}

1 set with 5 ants: {1,1,2,2,3}

Your job is to count the number of
possible sets of ants given the data above.

 
Input
* Line 1: 4 space-separated integers: T, A, S, and B
<br> <br>* Lines 2..A+1: Each line contains a single integer that is
an ant type present in the hive
 
Output
* Line 1: The number of sets of size S..B (inclusive)
that can be created. A set like {1,2} is the same as the set {2,1} and should
not be double-counted. Print only the LAST SIX DIGITS of this number, with no
leading zeroes or spaces.
 
Sample Input
3 5 2 3
1
2
2
1
3
 
Sample Output
10
 

分析:

多重集组合数也是由多重背包问题拓展出来的一类经典问题。这里仍然给大家讲2种方法:

①朴素方法:

状态:dp[i][j]:前i种中选j个可以组成的种数

决策:第i种选k个,k<=ant[i] && j-k>=0

转移:dp[i][j]=Σdp[i-1][j-k]

复杂度为O(B*Σant[i])即O(B*A)也即O(A^2),虽说这题A最大可到1e5,但是实际数据水,能过

②优化递推式

状态:dp[i][j]:前i种中选j个可以组成的种数

决策:第i种不选或者至少选一个

转移:

1.若不选,显然为dp[i-1][j]

2.若至少选一种,那么为dp[i][j-1]-dp[i-1][j-ant[i]-1]

我们这样来理解,dp[i][j-1] 理解为已经选了第i种一个,至于还选不选这里我们不管它,所以它可以用来代表至少选一个

但是dp[i][j-1]还有一层含义便是前i种中选j-1个可以组成的种数,所以它包含了选ant[i]个第i种,即dp[i-1][j-ant[i]-1],但

dp[i][j] 最多选ant[i]个第i种,所以最后要减去这一种。

所以 dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-ant[i]-1]

复杂度为O(T*B)

 #include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int mod = ;
int dp[][];
int main()
{
int ant[];
int t, a, s, b;
cin >> t >> a >> s >> b;
memset(ant, , sizeof(ant));
int i;
int j;
for (i = ; i <= a; i++)
{
cin >> j;
ant[j]++;
}
for (i = ; i <= t; i++) dp[i][] = ;
dp[][] = dp[][] = ;
for (i = ; i <= t; i++)
{
for (j = ; j <= b; j++)
{
if (j - ant[i] - >= )
{//在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
dp[i][j] = (dp[i - ][j] + dp[i ][j - ] - dp[i - ][j - ant[i] - ] + mod) % mod;
}
else
{
dp[i][j] = (dp[i - ][j] + dp[i][j - ])%mod;
}
}
}
int sum = ;
for (i = s; i <= b; i++)
sum = (sum + dp[t][i]) % mod;
cout << sum << endl;
return ;
}

为了节约空间%2;

#include<iostream>
using namespace std;
#define MOD 1000000
int T, A, S, B;
int ant[];
int dp[][];
int ans;
int main()
{
scanf("%d%d%d%d", &T, &A, &S, &B);
for (int i = ; i <= A; i++)
{
int aa;
scanf("%d", &aa);
ant[aa]++;
}
dp[][] = dp[][] = ;
for (int i = ; i <= T; i++)
for (int j = ; j <= B; j++)
if (j - ant[i] - >= ) dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ] - dp[(i - ) % ][j - ant[i] - ] + MOD) % MOD; //在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
else dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ]) % MOD;
for (int i = S; i <= B; i++)
ans = (ans + dp[T % ][i]) % MOD;
printf("%d\n", ans);
return ;
}
 

poj 3046 Ant Counting(多重集组合数)的更多相关文章

  1. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  2. poj3046 Ant Counting——多重集组合数

    题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...

  3. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  4. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  5. poj 3046 Ant Counting——多重集合的背包

    题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...

  6. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  7. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  8. 【POJ - 3046】Ant Counting(多重集组合数)

    Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...

  9. POJ_3046_Ant_Counting_(动态规划,多重集组合数)

    描述 http://poj.org/problem?id=3046 n种蚂蚁,第i种有ai个,不同种类的蚂蚁可以相互区分,但同一种类的蚂蚁不能相互区分,从这些蚂蚁中取出s,s+1,s+2,...,b- ...

随机推荐

  1. 一道sql 关于pivot的面试题

    分析:其实它是对时间月份行转列的 表结构设计: 结果: select Name,moth,ISNULL([01],0) as Value1,ISNULL([02],0) as Value2,ISNUL ...

  2. 1.3 C++引用(Reference)

    参考:http://www.weixueyuan.net/view/6328.html 总结: 引用是变量的另外一个别名,不是指针,与原变量名同指相同的内存.可以原变量的值. 在函数中作为形参可以修改 ...

  3. windows form参数传递过程

    三.windows form参数传递过程 在Windows 程序设计中参数的传递,同样也是非常的重要的. 这里主要是通过带有参数的构造函数来实现的, 说明:Form1为主窗体,包含控件:文本框text ...

  4. iOS 工程自动化 - OCLint

    前言 最近一直在做 iOS 工程自动化方向的事情,所以把自己研究和实践的内容进行记录并分享,希望能给大家一些帮助. 为什么要使用 OCLint 做为一个静态代码分析工具,我们引入 OCLint 的目的 ...

  5. 如何使用 python3 将RGB 图片转换为 灰度图

    首先,介绍第一种方法, 使用  PIL  库,   PIL库是一种python语言常用的一个图形处理库. 关于   PIL  库的安装本文就不介绍了. from PIL import Image I ...

  6. google-protobuf安装详解

    前言 编译调试项目的过程中涉及到caffe的编译,提示没有安装protobuf的错误,本文详解protobuf的安装: 问题描述 解决步骤 1.查看google protobuf的github,没有直 ...

  7. ACM 常见词汇

    rectangular 美:  [rek'tæŋɡjələr] 英:  [rek'tæŋɡjʊlə(r)] adj. 矩形的:成直角的   grid 美:  [ɡrɪd] 英:  [ɡrɪd] n. ...

  8. CTF-练习平台-Misc之 Telent

    三.Telent 下载下来文件,解压压缩包,用记事本打开pcap文件,发现flag

  9. 【BZOJ1702】[usaco2007margold]队列平衡

    原来蛤习线性探测的时候要每次加一个稍大一点的数而不是每次+1……连蛤习都不会写,我tmd是有多弱 原题: N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色, ...

  10. 使用Visual Studio Code开发Asp.Net Core WebApi学习笔记(十)-- 发布(Windows)

    本篇将在这个系列演示的例子上继续记录Asp.Net Core在Windows上发布的过程. Asp.Net Core在Windows上可以采用两种运行方式.一种是自托管运行,另一种是发布到IIS托管运 ...