【Math】证明:实对称阵属于不同特征值的的特征向量是正交的
证明:实对称阵属于不同特征值的的特征向量是正交的.
设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量.
则 p1(Aq)=p1(nq)=np1q
(p1A)q=(p1A1)q=(AP)1q=(mp)1q=mp1q
因为 p1(Aq)= (p1A)q
上两式作差得:
(m-n)p1q=0
由于m不等于n, 所以p1q=0
即(p,q)=0,从而p,q正交.
说明:p1表示p的转置,A1表示A的转置,(Ap)1表示Ap的转置
【Math】证明:实对称阵属于不同特征值的的特征向量是正交的的更多相关文章
- $A,B$ 实对称 $\ra\tr((AB)^2)\leq \tr(A^2B^2)$
设 $A,B$ 是 $n$ 阶实对称矩阵. 试证: $\tr((AB)^2)\leq \tr(A^2B^2)$. 又问: 等号何时成立? 证明: 由 $$\bex \sum_i \sez{\su ...
- 复旦高等代数 II(15级)思考题
1.设 $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ 是整系数首一多项式, 满足: $|a_0|$ 是素数且 $$|a_0|>1+\sum_{i=1}^{n ...
- 复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...
- 复旦高等代数 II(15级)每周一题
[问题2016S01] 设 $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ 是整系数首一多项式, 满足: $|a_0|$ 是素数且 $$|a_0|>1+\s ...
- (邹博ML)矩阵和线性代数
主要内容 矩阵 特征值和特征向量 矩阵求导 矩阵 SVD的提法 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做对称方阵在任意矩阵上的推广. 假 ...
- SIGAI机器学习第八集 数据降维1
讲授数据降维原理,PCA的核心思想,计算投影矩阵,投影算法的完整流程,非线性降维技术,流行学习的概念,局部线性嵌入,拉普拉斯特征映射,局部保持投影,等距映射,实际应用 大纲: 数据降维问题PCA的思想 ...
- 降维之主成分分析法(PCA)
一.主成分分析法的思想 我们在研究某些问题时,需要处理带有很多变量的数据,比如研究房价的影响因素,需要考虑的变量有物价水平.土地价格.利率.就业率.城市化率等.变量和数据很多,但是可能存在噪音和冗余, ...
- 矩阵的特征值和特征向量的雅克比算法C/C++实现
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...
- 行列式的组合定义及其应用--反对称阵的Pfaffian
以组合定义为出发点的行列式理论的引入方式在很多高等代数或线性代数的教材中被采用, 其优缺点同样明显. 组合定义形式上的简单是其最大的优点, 用它可以简洁地证明行列式的所有性质, 并快速进入行列式的计算 ...
随机推荐
- React(0.13) 定义一个多选的组件
<!DOCTYPE html> <html> <head> <title>React JS</title> <script src=& ...
- 面试必备:HashMap源码解析(JDK8)
1 概述 本文将从几个常用方法下手,来阅读HashMap的源码. 按照从构造方法->常用API(增.删.改.查)的顺序来阅读源码,并会讲解阅读方法中涉及的一些变量的意义.了解HashMap的特点 ...
- python selenium 常见问题列表
python selenium webdriver 常见问题FAQ 另一个FAQ: https://code.google.com/p/selenium/wiki/FrequentlyAskedQue ...
- Python 文件 readlines() 方法
概述 Python 文件 readlines() 方法用于读取整个文件(所有行)到一个列表,可以由for... in ... 结构进行遍历.列表的每一行变成列表的每一个元素. 语法 readlines ...
- C#基础第六天-作业-利用面向对象的思想去实现名片
1.利用面向对象的思想去实现: (增加,修改,删除,查询,查询全部)需求:根据人名去(删除/查询).指定列:姓名,年龄,性别,爱好,电话. 本系列教程: C#基础总结之八面向对象知识点总结-继承与多态 ...
- centos7 中搭建gitlab
1.在virtual box中新建一个虚拟机 2.gitlab ce(community版本)地址:https://about.gitlab.com/installation/#centos-7?ve ...
- 微信小程序JS导出和导入
1. 导出 1.1 方法和变量导出(写在被导出方法和变量的js文件) module.exports = { variable: value, method : methodName } 1.2 cla ...
- unity, Collider2D.attachedRigidbody
boss根节点上挂RigidBody2D(且boss根节点以下任何子节点均不挂RigidBody2D),boss腿部骨骼节点挂collider2D,标签为"bossLeg",bos ...
- Ucloud的自主研发的检测主机是否被入侵的agent
wget --timeout 3 -t 2 http://download.uhostsec.service.ucloud.cn:8090/ucloud-secagent-install.sh -O ...
- kibana显示报错
"status": 500, "reason": "ElasticsearchException[org.elasticsear ...