MapReduce任务参数调优(转)
http://blog.javachen.com/2014/06/24/tuning-in-mapreduce/
本文主要记录Hadoop 2.x版本中MapReduce参数调优,不涉及Yarn的调优。
Hadoop的默认配置文件(以cdh5.0.1为例):
说明:
在hadoop2中有些参数名称过时了,例如原来的
mapred.reduce.tasks改名为mapreduce.job.reduces了,当然,这两个参数你都可以使用,只是第一个参数过时了。
1. 操作系统调优
- 增大打开文件数据和网络连接上限,调整内核参数
net.core.somaxconn,提高读写速度和网络带宽使用率 - 适当调整
epoll的文件描述符上限,提高Hadoop RPC并发 关闭swap。如果进程内存不足,系统会将内存中的部分数据暂时写入磁盘,当需要时再将磁盘上的数据动态换置到内存中,这样会降低进程执行效率- 增加
预读缓存区大小。预读可以减少磁盘寻道次数和I/O等待时间 - 设置
openfile
2. Hdfs参数调优
2.1 core-default.xml:
hadoop.tmp.dir:
- 默认值: /tmp
- 说明: 尽量手动配置这个选项,否则的话都默认存在了里系统的默认临时文件/tmp里。并且手动配置的时候,如果服务器是多磁盘的,每个磁盘都设置一个临时文件目录,这样便于mapreduce或者hdfs等使用的时候提高磁盘IO效率。
fs.trash.interval:
- 默认值: 0
- 说明: 这个是开启hdfs文件删除自动转移到垃圾箱的选项,值为垃圾箱文件清除时间。一般开启这个会比较好,以防错误删除重要文件。单位是分钟。
io.file.buffer.size:
- 默认值:4096
- 说明:SequenceFiles在读写中可以使用的缓存大小,可减少 I/O 次数。在大型的 Hadoop cluster,建议可设定为 65536 到 131072。
2.2 hdfs-default.xml:
dfs.blocksize:
- 默认值:134217728
- 说明: 这个就是hdfs里一个文件块的大小了,CDH5中默认128M。太大的话会有较少map同时计算,太小的话也浪费可用map个数资源,而且文件太小namenode就浪费内存多。根据需要进行设置。
dfs.namenode.handler.count:
- 默认值:10
- 说明:设定 namenode server threads 的数量,这些 threads 會用 RPC 跟其他的 datanodes 沟通。当 datanodes 数量太多时会发現很容易出現 RPC timeout,解決方法是提升网络速度或提高这个值,但要注意的是 thread 数量多也表示 namenode 消耗的内存也随着增加
3. MapReduce参数调优
包括以下节点:
- 合理设置槽位数目
- 调整心跳配置
- 磁盘块配置
- 设置RPC和线程数目
- 启用批量任务调度
3.1 mapred-default.xml:
mapred.reduce.tasks(mapreduce.job.reduces):
- 默认值:1
- 说明:默认启动的reduce数。通过该参数可以手动修改reduce的个数。
mapreduce.task.io.sort.factor:
- 默认值:10
- 说明:Reduce Task中合并小文件时,一次合并的文件数据,每次合并的时候选择最小的前10进行合并。
mapreduce.task.io.sort.mb:
- 默认值:100
- 说明: Map Task缓冲区所占内存大小。
mapred.child.java.opts:
- 默认值:-Xmx200m
- 说明:jvm启动的子线程可以使用的最大内存。建议值
-XX:-UseGCOverheadLimit -Xms512m -Xmx2048m -verbose:gc -Xloggc:/tmp/@taskid@.gc
mapreduce.jobtracker.handler.count:
- 默认值:10
- 说明:JobTracker可以启动的线程数,一般为tasktracker节点的4%。
mapreduce.reduce.shuffle.parallelcopies:
- 默认值:5
- 说明:reuduce shuffle阶段并行传输数据的数量。这里改为10。集群大可以增大。
mapreduce.tasktracker.http.threads:
- 默认值:40
- 说明:map和reduce是通过http进行数据传输的,这个是设置传输的并行线程数。
mapreduce.map.output.compress:
- 默认值:false
- 说明: map输出是否进行压缩,如果压缩就会多耗cpu,但是减少传输时间,如果不压缩,就需要较多的传输带宽。配合 mapreduce.map.output.compress.codec使用,默认是 org.apache.hadoop.io.compress.DefaultCodec,可以根据需要设定数据压缩方式。
mapreduce.reduce.shuffle.merge.percent:
- 默认值: 0.66
- 说明:reduce归并接收map的输出数据可占用的内存配置百分比。类似mapreduce.reduce.shuffle.input.buffer.percen属性。
mapreduce.reduce.shuffle.memory.limit.percent:
- 默认值: 0.25
- 说明:一个单一的shuffle的最大内存使用限制。
mapreduce.jobtracker.handler.count:
- 默认值: 10
- 说明:可并发处理来自tasktracker的RPC请求数,默认值10。
mapred.job.reuse.jvm.num.tasks(mapreduce.job.jvm.numtasks):
- 默认值: 1
- 说明:一个jvm可连续启动多个同类型任务,默认值1,若为-1表示不受限制。
mapreduce.tasktracker.tasks.reduce.maximum:
- 默认值: 2
- 说明:一个tasktracker并发执行的reduce数,建议为cpu核数
4. 系统优化
4.1 避免排序
对于一些不需要排序的应用,比如hash join或者limit n,可以将排序变为可选环节,这样可以带来一些好处:
- 在Map Collect阶段,不再需要同时比较partition和key,只需要比较partition,并可以使用更快的计数排序(O(n))代替快速排序(O(NlgN))
- 在Map Combine阶段,不再需要进行归并排序,只需要按照字节合并数据块即可。
- 去掉排序之后,Shuffle和Reduce可同时进行,这样就消除了Reduce Task的屏障(所有数据拷贝完成之后才能执行reduce()函数)。
4.2 Shuffle阶段内部优化
- Map端--用Netty代替Jetty
- Reduce端--批拷贝
- 将Shuffle阶段从Reduce Task中独立出来
5. 总结
在运行mapreduce任务中,经常调整的参数有:
mapred.reduce.tasks:手动设置reduce个数mapreduce.map.output.compress:map输出结果是否压缩mapreduce.map.output.compress.codec
mapreduce.output.fileoutputformat.compress:job输出结果是否压缩mapreduce.output.fileoutputformat.compress.typemapreduce.output.fileoutputformat.compress.codec
MapReduce任务参数调优(转)的更多相关文章
- MapReduce参数调优
原文链接:http://blog.javachen.com/2014/06/24/tuning-in-mapreduce/ 本文主要记录Hadoop 2.x版本中MapReduce参数调优,不涉及Ya ...
- Spark Shuffle原理、Shuffle操作问题解决和参数调优
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...
- 大数据:Hive常用参数调优
1.limit限制调整 一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果. 有一个配置属性可以开启,避免这种情况---对数据源进行抽样 hive.limit.optimize.e ...
- Hbase和Hadoop的内存参数调优 + 前端控制台
1.hadoop的内存配置调优 mapred-site.xml的内存调整 <property> <name>mapreduce.map.memory.mb</name&g ...
- 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...
- 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...
- spark参数调优
摘要 1.num-executors 2.executor-memory 3.executor-cores 4.driver-memory 5.spark.default.parallelism 6. ...
- Linux内核 TCP/IP、Socket参数调优
Linux内核 TCP/IP.Socket参数调优 2014-06-06 Harrison.... 阅 9611 转 165 转藏到我的图书馆 微信分享: Doc1: /proc/sy ...
- JVM参数调优
JVM参数调优 JVM参数调优是一个很头痛的问题,可能和应用有关系,下面是本人一些调优的实践经验,希望对读者能有帮助,环境LinuxAS4,resin2.1.17,JDK6.0,2CPU,4G内存,d ...
随机推荐
- nginx 代理ssh
events { worker_connections 1024; } stream { #stream模块,就跟http模块一样 upstream ssh { server 127.0.0.1:22 ...
- 关于Spring-Data-Jpa的一些理解
spring data jpa介绍 首先了解JPA是什么? JPA(Java Persistence API)是Sun官方提出的Java持久化规范.它为Java开发人员提供了一种对象/关联映射工具来管 ...
- 利用Visual Studio 2013 开发微软云Windows Azure配置指南(针对中国大陆)
微软云在中国是由“世纪互联”营运的,所以如果你用Visual Stuido 2003全通通用账户开发微软云,会有问题,这是他的不方便支持.好处是,因为是在大陆营运,所以速度比较快. (1)打开官网 h ...
- spring mvc 返回乱码SpringMVC使用@ResponseBody注解返回中文字符串乱码的问题
原文地址:https://www.cnblogs.com/fzj16888/p/5923232.html 先说一下我的经历,以及解决问题的而过程. 在使用SpringMVC的时候,最开始的时候在配置文 ...
- JVM的内存区域划分(转)
原文链接:JVM的内存区域划分 JVM的内存区域划分 学过C语言的朋友都知道C编译器在划分内存区域的时候经常将管理的区域划分为数据段和代码段,数据段包括堆.栈以及静态数据区.那么在Java语言当中,内 ...
- Linux Command : top
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程所占用的系统资源,类似于Windows的任务管理器.下面详细介绍它的使用方法.top是一个动态显示过程,即可以通过用户按键来不断刷 ...
- windows server 2012将计算机图标添加到桌面
windows server 2012系统安装完以后桌面默认只有回收站一个图标,如何将window常用的图标(计算机.控制面板.网络.用户文件)的图标添加到桌面呢,下面为作者本人亲测.操作简单至极. ...
- GridControl常见用法【转】
刚接触DevExpress第三方控件,把GridControl的常见用法整理一下,以供参考: 说明: gcTest GridControl gvText GridView //隐藏最上面的G ...
- 在ASP.NET中支持断点续传下载大文件
IE的自带下载功能中没有断点续传功能,要实现断点续传功能,需要用到HTTP协议中鲜为人知的几个响应头和请求头. 一. 两个必要响应头Accept-Ranges.ETag 客户端每次提交下 ...
- 使用jQuery获取radio/checkbox组的值的代码收集
<!-- $("document").ready(function(){ $("#btn1").click(function(){ $("[na ...