0 NumPy数组

NumPy数组:NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:
实际的数据
描述这些数据的元数据

NumPy数组属性:
ndim(纬数,x,y 2),shape(纬度,2*3),reshape(纬度),size:元素个数,dtype:元素数据类型,itemsize:所有元素的字节大小
创建数组:
使用array函数, a = array( [2,3,4] ), b = array( [ (1.5,2,3), (4,5,6) ] )  
可以在创建时显式指定数组中元素的类型c = array( [ [1,2], [3,4] ], dtype=complex)
d = zeros((3,4))  
ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型
empty((2,3)) 
full((2,3),8)
NumPy提供一个类似arange的函数返回一个数列形式的数组:
arange(10, 30, 5)
array([10, 15, 20, 25])
arange(0,2,0.5)
array([ 0. , 0.5, 1. , 1.5])
a = array([1,2,3,4])
a2 = array([1,2,3,4],[1,2,3,4],[1,2,3,4])

np.ones((2,3))
np.zeeros((2,4))
np.full((2,2),8)

1 NumPy中的基本数据类型
名称 描述
bool 用一个字节存储的布尔类型(True或False)
inti 由所在平台决定其大小的整数(一般为int32或int64)
int8 一个字节大小,-128 至 127
int16 整数,-32768 至 32767
int32 整数,-2 ** 31 至 2 ** 32 -1
int64 整数,-2 ** 63 至 2 ** 63 - 1
uint8 无符号整数,0 至 255
uint16 无符号整数,0 至 65535
uint32 无符号整数,0 至 2 ** 32 - 1
uint64 无符号整数,0 至 2 ** 64 - 1
float16 半精度浮点数:16位,正负号1位,指数5位,精度10位
float32 单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

输出数组

2 NumPy数组2

数组的操作:数组的算术运算是按元素逐个运算。数组运算后将创建包含运算结果的新数组,有些操作符如+=和*=用来更改已存在数组而不创建一个新的数组。
基本运算:+,-,*./ 按元素逐个计算
索引切片和迭代:和列表和其它Python序列一样,一维数组可以进行索引、切片和迭代操作。 a[2],a[2:5], a[: :-1] # 反转a
a[:6:2]= -1000 # 等同于a[0:6:2]= -1000,从开始到第6个位置,每隔一个元素将其赋值为-1000
for i in a:
print i**(1/3.)

多维数组可以每个轴有一个索引。这些索引由一个逗号分割的元组给出。 b[0:5, 1]

形状shape操作
更改数组的形状: a.ravel() # 平坦化数组

3 自定义结构数组
student= dtype({'names':['name', 'age', 'weight'], 'formats':['S32', 'i','f']}, align = True)
a= array([(“Zhang”, 32, 65.5), (“Wang”, 24, 55.2)], dtype =student)

组合函数: 2 * a
水平组合:hstack((a, b)) ,也可通过concatenate函数并指定相应的轴来获得这一效果:concatenate((a, b), axis=1)
垂直组合: vstack((a, b))
深度组合: dstack((a, b)) 数组的第三个轴(即深度)上组合
行组合:row_stack((one, two)),每一行进行组合
列组合:column_stack((oned,two))
分割数组:在NumPy中,分割数组的函数有hsplit、vsplit、dsplit和split。可将数组分割成相同大小的子数组,或指定原数组分割的位置

水平分割:hsplit(a, 3),split(a, 3, axis=1)
垂直分割:vsplit(a, 3) ,也可通过split函数并指定轴为1来获得这样的效果:split(a, 3, axis=0)
面向深度的分割:dsplit(c, 3)

复制和镜像View
完全不复制:
简单的赋值,而不复制数组对象或它们的数据。
视图view和浅复制:
c = a.view() 切片数组返回它的一个视图,不同的数组对象分享同一个数据。视图方法创造一个新的数组对象指向同一数据。
深复制:
d = a.copy() 这个复制方法完全复制数组和它的数据。

更多资料请参考:

http://blog.csdn.net/sunny2038/article/details/9023797

python -- numpy 基本数据类型,算术运算,组合,分割 函数的更多相关文章

  1. Python numpy总结(3)——常用函数用法

    1,np.ceil(x, y) 限制元素范围,进一法,即向上取整. x 表示输入的数据  y float类型 表示每个元素的上限. a = np.array([-1.7, -1.5, -0.2, 0. ...

  2. 【C++实现python字符串函数库】一:分割函数:split、rsplit

    [C++实现python字符串函数库]split()与rsplit()方法 前言 本系列文章将介绍python提供的字符串函数,并尝试使用C++来实现这些函数.这些C++函数在这里做单独的分析,最后我 ...

  3. [转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate() 觉得有用的话,欢迎一起讨论相互学习~Follow Me ...

  4. Python 运算符与数据类型

    Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...

  5. Python——NumPy库入门

    1.数据的纬度 维度:一组数据的组织形式 1.1 一维数据 一维数据由对等关系的有序或无序数据构成,采用线性方式组织 ,对应列表.数组和集合等概念 列表:数据类型可以不同 ,如 3.1413, 'pi ...

  6. python基础之数据类型(二)

    Python3 元组 Python 的元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号,列表使用方括号. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可. 不可变的tupl ...

  7. 第一节 Python基础之数据类型(整型,布尔值,字符串)

    数据类型是每一种语言的基础,就比如说一支笔,它的墨有可能是红色,有可能是黑色,也有可能是黄色等等,这不同的颜色就会被人用在不同的场景.Python中的数据类型也是一样,比如说我们要描述一个人的年龄:小 ...

  8. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  9. CS231中的python + numpy课程

    本课程中所有作业将使用Python来完成.Python本身就是一种很棒的通用编程语言,现在在一些流行的库(numpy,scipy,matplotlib)的帮助下,它为科学计算提供强大的环境. 我们希望 ...

随机推荐

  1. 【转】Java 有值类型吗?

    Java 有值类型吗? 有人看了我之前的文章『Swift 语言的设计错误』,问我:“你说 Java 只有引用类型(reference type),但是根据 Java 的官方文档,Java 也有值类型( ...

  2. 整合大量开源库项目(八)能够载入Gif动画的GifImageView

    转载请注明出处王亟亟的大牛之路 上周大多数时间都是依据兴起,想到什么做什么写了几个自己定义控件,把Soyi丢在那没怎么动,今天就把写的东西整合进来,顺便把SOyi"个人研发的结构理一下&qu ...

  3. 第2章 Python基础-字符编码&数据类型 字符编码&字符串 练习题

    1.简述位.字节的关系 位(bit)是计算机中最小的表示单元,数据传输是以“位”为单位的,1bit缩写为1b 字节(Byte)是计算机中最小的存储单位,1Byte缩写为1B 8bit = 1Byte ...

  4. pyspark dataframe 常用操作

    spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持.   在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库.   首先加 ...

  5. WPF对象级资源的定义与查找

    文章概述: 本演示介绍了怎样定义WPF对象级的资源,并通过XAML代码和C#訪问和使用对象级资源. 相关下载(代码.屏幕录像):http://pan.baidu.com/s/1hqvJNY8 在线播放 ...

  6. RecyclerView中实现headerView,footerView功能

    之前用com.bartoszlipinski.recyclerviewheader.RecyclerViewHeader 不过局限性有点大. (com.bartoszlipinski.recycler ...

  7. 关于Suppressing notification from package com.xxx.xxx by user request.的异常

    其实以下都是废话. 如果你的测试的真机或者是模拟器是android4.1以上, 就有可能遇到这个Toast或者通知不能弹出. 自己不懂为什么. 想想你自己的应用设置是否有勾上这个 没有的话.就活该显示 ...

  8. Atitit vue.js 把ajax数据 绑定到form表单

    Atitit vue.js 把ajax数据 绑定到form表单 1.1. 使用场景:主要应用在编辑与提交场合..1 1.2. 绑定数据到form控件,可以使用jquery,不过vue.js更加简单1 ...

  9. [svc]nginx优化

    nginx的25条优化

  10. 【iOS XMPP】使用XMPPFramewok(五):好友列表

    转自:http://www.cnblogs.com/dyingbleed/archive/2013/05/17/3082226.html 好友列表 好友列表,在 XMPP 中被称为 roster,花名 ...