PDF文档已上传Github 

Github:https://github.com/zwjlpeng/Angrily_Learn_Java_8

为了支持函数式编程,Java 8引入了Lambda表达式,那么在Java 8中到底是如何实现Lambda表达式的呢? Lambda表达式经过编译之后,到底会生成什么东西呢? 在没有深入分析前,让我们先想一想,Java 8中每一个Lambda表达式必须有一个函数式接口与之对应,函数式接口与普通接口的区别,可以参考前面的内容,那么你或许在想Lambda表达式是不是转化成与之对应的函数式接口的一个实现类呢,然后通过多态的方式调用子类的实现呢,如下面代码是一个Lambda表达式的样例

@FunctionalInterface
interface Print<T> {
public void print(T x);
}
public class Lambda {
public static void PrintString(String s, Print<String> print) {
print.print(s);
}
public static void main(String[] args) {
PrintString("test", (x) -> System.out.println(x));
}
}

按照上面的分析,理论上经过编译器处理后,最终生成的代码应该如下面所示:

@FunctionalInterface
interface Print<T> {
public void print(T x);
} class Lambda$$0 implements Print<String> {
@Override
public void print(String x) {
System.out.println(x);
}
} public class Lambda {
public static void PrintString(String s,
Print<String> print) {
print.print(s);
}
public static void main(String[] args) {
PrintString("test", new Lambda$$0());
}
}

再或者是一个内部类实现,代码如下所示:

@FunctionalInterface
interface Print<T> {
public void print(T x);
}
public class Lambda {
final class Lambda$$0 implements Print<String> {
@Override
public void print(String x) {
System.out.println(x);
}
}
public static void PrintString(String s,
Print<String> print) {
print.print(s);
}
public static void main(String[] args) {
PrintString("test", new Lambda().new Lambda$$0());
}
}

异或是这种匿名内部类实现,代码如下所示:

@FunctionalInterface
interface Print<T> {
public void print(T x);
}
public class Lambda {
public static void PrintString(String s,
Print<String> print) {
print.print(s);
}
public static void main(String[] args) {
PrintString("test", new Print<String>() {
@Override
public void print(String x) {
System.out.println(x);
}
});
}
}

上面的代码,除了在代码长度上长了点外,与用Lambda表达式实现的代码运行结果是一样的,那么Java 8到底是用什么方式实现的呢? 是不是上面三种实现方式中的一种呢,你也许觉的自已想的是对的,其实本来也就是对的,在Java 8中采用的是内部类来实现Lambda表达式

那么Lambda表达式到底是如何实现的呢?

为了探究Lambda表达式是如何实现的,就得需要研究Lambda表过式最终转化成的字节码文件,这就需要jdk的bin目录下的一个字节码查看工具及反编译工具

javap -p Lambda.class

上面命令中的-p表示输出所有类及成员,运行上面的命令后,得的结果如下所示:

Compiled from "Lambda.java"
public class Lambda {
public Lambda();
public static void PrintString(java.lang.String, Print<java.lang.String>);
public static void main(java.lang.String[]);
private static void lambda$0(java.lang.String);
}

由上面的代码可以看出编译器会根据Lambda表达式生成一个私有的静态函数,注意,在这里说的是生成,而不是等价

private static void lambda$0(java.lang.String);

为了验证上面的转化是否正确? 我们在代码中定义一个lambda$0这个的函数,最终代码如下所示:

@FunctionalInterface
interface Print<T> {
public void print(T x);
} public class Lambda {
public static void PrintString(String s,
Print<String> print) {
print.print(s);
}
private static void lambda$0(String s) {
}
public static void main(String[] args) {
PrintString("test", (x) -> System.out.println(x));
}
}

上面的代码在编译时不会报错,但是运行时就会报错,因为存在两个lambda$0函数,如下所示,是运行时的错误

Exception in thread "main" java.lang.ClassFormatError: Duplicate method name&signature in class file Lambda
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:760)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:467)
at java.net.URLClassLoader.access$100(URLClassLoader.java:73)
at java.net.URLClassLoader$1.run(URLClassLoader.java:368)
at java.net.URLClassLoader$1.run(URLClassLoader.java:362)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:361)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:495)

通过javap对上述错误代码进行反编译,反编译之后输出的类的成员如下所示

Compiled from "Lambda.java"
public class Lambda {
public Lambda();
public static void PrintString(java.lang.String, Print<java.lang.String>);
private static void lambda$0(java.lang.String);
public static void main(java.lang.String[]);
private static void lambda$0(java.lang.String);
}

会发现lambda$0出现了两次,那么在代码运行的时候,就不知道去调用哪个,因此就会抛错。

有了上面的内容,可以知道的是Lambda表达式在Java 8中首先会生成一个私有的静态函数,这个私有的静态函数干的就是Lambda表达式里面的内容,因此上面的代码初步可以转化成如下所示的代码

@FunctionalInterface
interface Print<T> {
public void print(T x);
}
public class Lambda {
public static void PrintString(String s, Print<String> print) {
print.print(s);
} private static void lambda$0(String x) {
System.out.println(x);
} public static void main(String[] args) {
PrintString("test", /**lambda expression**/);
}
}

转化成上面的形式之后,那么如何实现调用静态的lambda$0函数呢,在这里可以在以下方法打上断点,可以发现在有lambda表达式的地方,运行时会进入这个函数

 public static CallSite metafactory(MethodHandles.Lookup caller,
String invokedName,
MethodType invokedType,
MethodType samMethodType,
MethodHandle implMethod,
MethodType instantiatedMethodType)
throws LambdaConversionException {
AbstractValidatingLambdaMetafactory mf;
mf = new InnerClassLambdaMetafactory(caller, invokedType,
invokedName, samMethodType,
implMethod, instantiatedMethodType,
false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY);
mf.validateMetafactoryArgs();
return mf.buildCallSite();
}

在这个函数中可以发现为Lambda表达式生成了一个内部类,为了验证是否生成内部类,可以在运行时加上-Djdk.internal.lambda.dumpProxyClasses,加上这个参数后,运行时,会将生成的内部类class码输出到一个文件中

final class Lambda$$Lambda$1 implements Print {
private Lambda$$Lambda$1();
public void print(java.lang.Object);
}

如果运行javap -c -p 则结果如下

final class Lambda$$Lambda$1 implements Print {
private Lambda$$Lambda$1();
Code:
0: aload_0
1: invokespecial #10 // Method java/lang/Object."<init>":()V
4: return public void print(java.lang.Object);
Code:
0: aload_1
1: checkcast #14 // class java/lang/String
4: invokestatic #20 // Method Lambda.lambda$0:(Ljava/lang/String;)V
7: return
}

通过上面的字节码指令可以发现实现上调用的是Lambda.lambda$0这个私有的静态方法

因此最终的Lambda表达式等价于以下形式

@FunctionalInterface
interface Print<T> {
public void print(T x);
}
public class Lambda {
public static void PrintString(String s, Print<String> print) {
print.print(s);
}
private static void lambda$0(String x) {
System.out.println(x);
}
final class $Lambda$1 implements Print{
@Override
public void print(Object x) {
lambda$0((String)x);
}
}
public static void main(String[] args) {
PrintString("test", new Lambda().new $Lambda$1());
}
}

Java 8 Lambda实现原理分析的更多相关文章

  1. 原子类java.util.concurrent.atomic.*原理分析

    原子类java.util.concurrent.atomic.*原理分析 在并发编程下,原子操作类的应用可以说是无处不在的.为解决线程安全的读写提供了很大的便利. 原子类保证原子的两个关键的点就是:可 ...

  2. JAVA常用数据结构及原理分析

    JAVA常用数据结构及原理分析 http://www.2cto.com/kf/201506/412305.html 前不久面试官让我说一下怎么理解java数据结构框架,之前也看过部分源码,balaba ...

  3. Java NIO使用及原理分析 (四)

    在上一篇文章中介绍了关于缓冲区的一些细节内容,现在终于可以进入NIO中最有意思的部分非阻塞I/O.通常在进行同步I/O操作时,如果读取数据,代码会阻塞直至有 可供读取的数据.同样,写入调用将会阻塞直至 ...

  4. (6)Java数据结构-- 转:JAVA常用数据结构及原理分析

    JAVA常用数据结构及原理分析  http://www.2cto.com/kf/201506/412305.html 前不久面试官让我说一下怎么理解java数据结构框架,之前也看过部分源码,balab ...

  5. Java NIO使用及原理分析 (四)(转)

    在上一篇文章中介绍了关于缓冲区的一些细节内容,现在终于可以进入NIO中最有意思的部分非阻塞I/O.通常在进行同步I/O操作时,如果读取数据,代码会阻塞直至有 可供读取的数据.同样,写入调用将会阻塞直至 ...

  6. Java NIO使用及原理分析(1-4)(转)

    转载的原文章也找不到!从以下博客中找到http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一 ...

  7. Java NIO使用及原理分析(二)

    在第一篇中,我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如 ...

  8. Java NIO使用及原理分析(二)(转)

    在第一篇中,我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如 ...

  9. Java NIO使用及原理分析 (一)(转)

    最近由于工作关系要做一些Java方面的开发,其中最重要的一块就是Java NIO(New I/O),尽管很早以前了解过一些,但并没有认真去看过它的实现原理,也没有机会在工作中使用,这次也好重新研究一下 ...

随机推荐

  1. html10

    1.动画fadeIn() - 淡入fadeOut() - 淡出 -通过改变透明度(opacity隐藏之后依旧占着位置)实现节点的显示和隐藏show() - 显示hide() - 隐藏 -同时改变节点的 ...

  2. 面经:Google两轮背靠背

    如题,谷歌两轮背靠背电面.两轮都是废话不多说直奔coding,虽然第一轮的中国大哥还是花了一点点时间了解了一下我的背景.毕业时间.research方向.说好的research面呢? 中国大哥出的题: ...

  3. mysql查询表基本操作

    数据库表的创建create table <表名>( <列名> <数据类型及长度> [not null], <列名> <数据类型及长度>, . ...

  4. Lower Power with CPF(一)

    CPF(Common Power Format):cadence推出的一种在设计中描述低功耗设计的文件.完全按Tcl的语言格式来定义. CPF文件在整个前端后端的过程中,需要的部分不一样,所以CPF文 ...

  5. 《Convolutional Neural Network Architectures for Matching Natural Language Sentences》句子匹配

    模型结构与原理 1. 基于CNN的句子建模 这篇论文主要针对的是句子匹配(Sentence Matching)的问题,但是基础问题仍然是句子建模.首先,文中提出了一种基于CNN的句子建模网络,如下图: ...

  6. MacaW Baby Learns Computer

    A - Macaw Baby Learns Computer Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & ...

  7. python 内置函数bytearray

    1.参考文档 class bytearray([source[, encoding[, errors]]]) Return a new array of bytes. The bytearray cl ...

  8. 谷歌发布"自动机器学习"技术 AI可自我创造

    谷歌发布"自动机器学习"技术 AI可自我创造 据Inverse报道,今年5月份,谷歌宣布其人工智能(AI)研究取得重大进展,似乎帮助科幻小说中最耸人听闻的末日预言成为现实.谷歌推出 ...

  9. [转载]C#异步调用四大方法详解

    C#异步调用四大方法是什么呢?C#异步调用四大方法的使用是如何进行的呢?让我们首先了解下什么时候用到C#异步调用: .NET Framework 允许您C#异步调用任何方法.定义与您需要调用的方法具有 ...

  10. Python3基础 if elif 示例 判断一个数在哪个区间内

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...