Spark2 Dataset DataFrame空值null,NaN判断和处理
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Column
import org.apache.spark.sql.DataFrameReader
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.functions._
import org.apache.spark.sql.DataFrameStatFunctions
import org.apache.spark.ml.linalg.Vectors math.sqrt(-1.0)
res43: Double = NaN math.sqrt(-1.0).isNaN()
res44: Boolean = true val data1 = data.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
data1: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] data1.limit(10).show
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| null| 27| null| no| 4| 14| 6| null|
| 0| null| 32| null| yes| 1| 12| 1| null|
| 0| null| 57| null| yes| 5| 18| 6| null|
| 0| null| 22| null| no| 2| 17| 6| null|
| 0| null| 32| null| no| 2| 17| 5| null|
| 0|female| 22| null| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+ // 删除所有列的空值和NaN
val resNull=data1.na.drop()
resNull: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] resNull.limit(10).show()
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
| 0| male| 37| 15| yes| 2| 20| 7| 2|
| 0| male| 27| 4| yes| 4| 18| 6| 4|
| 0| male| 47| 15| yes| 5| 17| 6| 4|
| 0|female| 22| 1.5| no| 2| 17| 5| 4|
| 0|female| 27| 4| no| 4| 14| 5| 4|
| 0|female| 37| 15| yes| 1| 17| 5| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+ //删除某列的空值和NaN
val res=data1.na.drop(Array("gender","yearsmarried")) // 删除某列的非空且非NaN的低于10的
data1.na.drop(10,Array("gender","yearsmarried")) //填充所有空值的列
val res123=data1.na.fill("wangxiao123")
res123: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res123.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation| rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao123| 27| wangxiao123| no| 4| 14| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| yes| 1| 12| 1|wangxiao123|
| 0|wangxiao123| 57| wangxiao123| yes| 5| 18| 6|wangxiao123|
| 0|wangxiao123| 22| wangxiao123| no| 2| 17| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| no| 2| 17| 5|wangxiao123|
| 0| female| 22| wangxiao123| no| 2| 12| 1|wangxiao123|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ //对指定的列空值填充
val res2=data1.na.fill(value="wangxiao111",cols=Array("gender","yearsmarried") )
res2: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res2.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao111| 27| wangxiao111| no| 4| 14| 6| null|
| 0|wangxiao111| 32| wangxiao111| yes| 1| 12| 1| null|
| 0|wangxiao111| 57| wangxiao111| yes| 5| 18| 6| null|
| 0|wangxiao111| 22| wangxiao111| no| 2| 17| 6| null|
| 0|wangxiao111| 32| wangxiao111| no| 2| 17| 5| null|
| 0| female| 22| wangxiao111| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ val res3=data1.na.fill(Map("gender"->"wangxiao222","yearsmarried"->"wangxiao567") )
res3: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res3.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao222| 27| wangxiao567| no| 4| 14| 6| null|
| 0|wangxiao222| 32| wangxiao567| yes| 1| 12| 1| null|
| 0|wangxiao222| 57| wangxiao567| yes| 5| 18| 6| null|
| 0|wangxiao222| 22| wangxiao567| no| 2| 17| 6| null|
| 0|wangxiao222| 32| wangxiao567| no| 2| 17| 5| null|
| 0| female| 22| wangxiao567| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ //查询空值列
data1.filter("gender is null").select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+ data1.filter("gender is not null").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+ data1.filter( data1("gender").isNull ).select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+ data1.filter("gender<>''").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+
Spark2 Dataset DataFrame空值null,NaN判断和处理的更多相关文章
- Spark Dataset DataFrame空值null,NaN判断和处理
Spark Dataset DataFrame空值null,NaN判断和处理 import org.apache.spark.sql.SparkSession import org.apache.sp ...
- oracle中空值null的判断和转换:NVL的用法
1.NULL空值概念 数据库里有一个很重要的概念:空值即NULL.有时表中,更确切的说是某些字段值,可能会出现空值, 这是因为这个数据不知道是什么值或根本就不存在. 2.NULL空值判断 空值不等同于 ...
- Spark Dataset DataFrame 操作
Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...
- js判断undefined类型,undefined,null,NaN的区别
js判断undefined类型 今天使用showModalDialog打开页面,返回值时.当打开的页面点击关闭按钮或直接点浏览器上的关闭则返回值是undefined 所以自作聪明判断 ...
- Javascript 中的非空判断 undefined,null, NaN的区别
JS 数据类型 在介绍这三个之间的差别之前, 先来看一下JS 的数据类型. 在 Java ,C这样的语言中, 使用一个变量之前,需要先定义这个变量并指定它的数据类型,是整型,字符串型,.... 但是 ...
- (转载)Javascript 中的非空判断 undefined,null, NaN的区别
原文地址:https://blog.csdn.net/oscar999/article/details/9353713 在介绍这三个之间的差别之前, 先来看一下JS 的数据类型. 在 Java ,C ...
- Spark2-对于Null/Nan的处理
一.几种查找空值的方法 1.Column方法 column.isNull/column.isNotNull/column.isNaN 2.类sql方法 二.na方法 2.1 na.drop方法 2.1 ...
- Update(Stage4):sparksql:第3节 Dataset (DataFrame) 的基础操作 & 第4节 SparkSQL_聚合操作_连接操作
8. Dataset (DataFrame) 的基础操作 8.1. 有类型操作 8.2. 无类型转换 8.5. Column 对象 9. 缺失值处理 10. 聚合 11. 连接 8. Dataset ...
- SQL学习之空值(Null)检索
在创建表表,我们可以指定其中的列包不包含值,在一列不包含值时,我们可以称其包含空值null. 确定值是否为null,不能简单的检查是否=null.select语句有一个特殊的where子句,可用来检查 ...
随机推荐
- yield 举例
示例代码: 神奇的地方在于yield返回的是一个IEumerable,可以直接枚举. // yield-example.cs using System; using System.Collection ...
- go fmt格式化----“占位符”
https://studygolang.com/articles/2644 https://studygolang.com/static/pkgdoc/pkg/fmt.htm
- Linux中实现多网卡绑定总结
在Linux中实现多网卡绑定 一.原理介绍: 1.什么是bonding? Linux bonding 驱动提供了一个把多个网络接口设备捆绑为单个的网络接口设置来使用.用于网络负载均衡及网络冗余: Li ...
- chm只看到目录,看不到内容解决办法
鼠标左键->属性->解除锁定->搞定!
- Linux应急响应(一):SSH暴力破解
0x00 前言 SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议,主要用于给远程登录会话数据进行加密,保证数据传输的安全.SSH口令长度太短或者复杂度不够,如仅包含数字,或仅包 ...
- ASP代码审计学习笔记 -4.命令执行漏洞
命令执行漏洞: 保存为cmd.asp,提交链接: http://localhost/cmd.asp?ip=127.0.0.1 即可执行命令 <%ip=request("ip" ...
- ActiveX 控件导入程序
ActiveX 控件导入程序将 ActiveX 控件的 COM 类型库中的类型定义转换为 Windows 窗体控件. http://msdn.microsoft.com/zh-cn/library/8 ...
- javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed
1.使用HttpClient4.3 调用https出现如下错误: javax.net.ssl.SSLHandshakeException: sun.security.validator.Validat ...
- 在eclipse里配置Android ndk环境 适用于windows mac 和linux(转)
在eclipse里配置Android ndk环境 适用于windows mac 和linux(转) 2012-02-27 13:02:16| 分类: android | 标签:java prog ...
- Studio更新
其实最主要的是下面三个步骤: 1.更新As工程为3.0 2.必须升级gradle到4.0以上 3.buildToolsVersion升级到26.0.0 4.在gradle.properties中配置版 ...