import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Column
import org.apache.spark.sql.DataFrameReader
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.functions._
import org.apache.spark.sql.DataFrameStatFunctions
import org.apache.spark.ml.linalg.Vectors math.sqrt(-1.0)
res43: Double = NaN math.sqrt(-1.0).isNaN()
res44: Boolean = true val data1 = data.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
data1: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] data1.limit(10).show
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| null| 27| null| no| 4| 14| 6| null|
| 0| null| 32| null| yes| 1| 12| 1| null|
| 0| null| 57| null| yes| 5| 18| 6| null|
| 0| null| 22| null| no| 2| 17| 6| null|
| 0| null| 32| null| no| 2| 17| 5| null|
| 0|female| 22| null| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+ // 删除所有列的空值和NaN
val resNull=data1.na.drop()
resNull: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] resNull.limit(10).show()
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
| 0| male| 37| 15| yes| 2| 20| 7| 2|
| 0| male| 27| 4| yes| 4| 18| 6| 4|
| 0| male| 47| 15| yes| 5| 17| 6| 4|
| 0|female| 22| 1.5| no| 2| 17| 5| 4|
| 0|female| 27| 4| no| 4| 14| 5| 4|
| 0|female| 37| 15| yes| 1| 17| 5| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+ //删除某列的空值和NaN
val res=data1.na.drop(Array("gender","yearsmarried")) // 删除某列的非空且非NaN的低于10的
data1.na.drop(10,Array("gender","yearsmarried")) //填充所有空值的列
val res123=data1.na.fill("wangxiao123")
res123: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res123.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation| rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao123| 27| wangxiao123| no| 4| 14| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| yes| 1| 12| 1|wangxiao123|
| 0|wangxiao123| 57| wangxiao123| yes| 5| 18| 6|wangxiao123|
| 0|wangxiao123| 22| wangxiao123| no| 2| 17| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| no| 2| 17| 5|wangxiao123|
| 0| female| 22| wangxiao123| no| 2| 12| 1|wangxiao123|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ //对指定的列空值填充
val res2=data1.na.fill(value="wangxiao111",cols=Array("gender","yearsmarried") )
res2: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res2.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao111| 27| wangxiao111| no| 4| 14| 6| null|
| 0|wangxiao111| 32| wangxiao111| yes| 1| 12| 1| null|
| 0|wangxiao111| 57| wangxiao111| yes| 5| 18| 6| null|
| 0|wangxiao111| 22| wangxiao111| no| 2| 17| 6| null|
| 0|wangxiao111| 32| wangxiao111| no| 2| 17| 5| null|
| 0| female| 22| wangxiao111| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ val res3=data1.na.fill(Map("gender"->"wangxiao222","yearsmarried"->"wangxiao567") )
res3: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res3.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao222| 27| wangxiao567| no| 4| 14| 6| null|
| 0|wangxiao222| 32| wangxiao567| yes| 1| 12| 1| null|
| 0|wangxiao222| 57| wangxiao567| yes| 5| 18| 6| null|
| 0|wangxiao222| 22| wangxiao567| no| 2| 17| 6| null|
| 0|wangxiao222| 32| wangxiao567| no| 2| 17| 5| null|
| 0| female| 22| wangxiao567| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ //查询空值列
data1.filter("gender is null").select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+ data1.filter("gender is not null").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+ data1.filter( data1("gender").isNull ).select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+ data1.filter("gender<>''").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+

Spark2 Dataset DataFrame空值null,NaN判断和处理的更多相关文章

  1. Spark Dataset DataFrame空值null,NaN判断和处理

    Spark Dataset DataFrame空值null,NaN判断和处理 import org.apache.spark.sql.SparkSession import org.apache.sp ...

  2. oracle中空值null的判断和转换:NVL的用法

    1.NULL空值概念 数据库里有一个很重要的概念:空值即NULL.有时表中,更确切的说是某些字段值,可能会出现空值, 这是因为这个数据不知道是什么值或根本就不存在. 2.NULL空值判断 空值不等同于 ...

  3. Spark Dataset DataFrame 操作

    Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...

  4. js判断undefined类型,undefined,null,NaN的区别

    js判断undefined类型 今天使用showModalDialog打开页面,返回值时.当打开的页面点击关闭按钮或直接点浏览器上的关闭则返回值是undefined   所以自作聪明判断       ...

  5. Javascript 中的非空判断 undefined,null, NaN的区别

    JS 数据类型 在介绍这三个之间的差别之前, 先来看一下JS  的数据类型. 在 Java ,C这样的语言中, 使用一个变量之前,需要先定义这个变量并指定它的数据类型,是整型,字符串型,.... 但是 ...

  6. (转载)Javascript 中的非空判断 undefined,null, NaN的区别

    原文地址:https://blog.csdn.net/oscar999/article/details/9353713 在介绍这三个之间的差别之前, 先来看一下JS  的数据类型. 在 Java ,C ...

  7. Spark2-对于Null/Nan的处理

    一.几种查找空值的方法 1.Column方法 column.isNull/column.isNotNull/column.isNaN 2.类sql方法 二.na方法 2.1 na.drop方法 2.1 ...

  8. Update(Stage4):sparksql:第3节 Dataset (DataFrame) 的基础操作 & 第4节 SparkSQL_聚合操作_连接操作

    8. Dataset (DataFrame) 的基础操作 8.1. 有类型操作 8.2. 无类型转换 8.5. Column 对象 9. 缺失值处理 10. 聚合 11. 连接 8. Dataset ...

  9. SQL学习之空值(Null)检索

    在创建表表,我们可以指定其中的列包不包含值,在一列不包含值时,我们可以称其包含空值null. 确定值是否为null,不能简单的检查是否=null.select语句有一个特殊的where子句,可用来检查 ...

随机推荐

  1. ioncube

    FileRun多功能的VPS文件管理器使用ioncube加密的 ioncube通过将代码编译成字节码,使PHP源代码免受他人监控.剽窃以及改动 ioncube提供了一个安装的向导程序 下载地址http ...

  2. php命令

    今天因为psi无法在5.3版本上运行,正好看了下这些php版本的特性. 无意中,5.4版本 Buid-in web server内置了一个简单的Web服务器 $ php -S localhost: 于 ...

  3. 【搞笑签名】390个qq个性昵称或签名,周末前娱乐一下

    1 来瓶82年的矿泉水 2 名不正则言承旭 3 天涯何处无芳草,还是母乳喂养好 4 她的妈妈不爱我 5 你丫的 6 农夫三拳 7 猪嚼在恋√痛 8 马驴脸猛鹿 9 小白兔兽性大发 10 曰捣一乱 11 ...

  4. 通过Nginx反向代理,IIS和apache 共用80端口

    #user nobody; worker_processes ; #error_log logs/error.log; #error_log logs/error.log notice; #error ...

  5. GridFS实现原理

    GridFS在数据库中,默认使用fs.chunks和fs.files来存储文件. 其中fs.files集合存放文件的信息,fs.chunks存放文件数据. 一个fs.files集合中的一条记录内容如下 ...

  6. win10屏幕投影

    不管是做设计还是看电影玩游戏编代码,多屏幕总是可以带来方便的.屏幕投影之前需要连接屏幕:通过VGA线连接.通过HDMI线连接.或者通过无线连接. 介绍Win10实现屏幕投影设置:https://jin ...

  7. tomcat运行模式APR安装

    centos6.2下,Tomcat运行模式apr安装过程,如下: 一.安装apr [root@vmT227-m5 /]# cd /usr/local/ [root@vmT227-m5 local]# ...

  8. Ansible 安装和管理服务

    ansible 使用 yum 模块来安装软件包,使用 service 模块来启动软件: [root@localhost ~]$ ansible 192.168.119.134 -m yum -a &q ...

  9. Selenium 延时等待

    在 Selenium 中, get() 方法会在网页框架加载结束后结束执行,此时如果获取 page_source ,可能并不是浏览器完全加载完成的页面: 如果某些页面有额外的 Ajax 请求,我们在网 ...

  10. Android 监听apk安装替换卸载广播

    首先是要获取应用的安装状态,通过广播的形式 以下是和应用程序相关的Broadcast Action ACTION_PACKAGE_ADDED 一个新应用包已经安装在设备上,数据包括包名(最新安装的包程 ...