Exercise:Softmax Regression

习题的链接:Exercise:Softmax Regression

softmaxCost.m

function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels)

% numClasses - the number of classes
% inputSize - the size N of the input vector
% lambda - weight decay parameter
% data - the N x M input matrix, where each column data(:, i) corresponds to
% a single test set
% labels - an M x matrix containing the labels corresponding for the input data
% % Unroll the parameters from theta
theta = reshape(theta, numClasses, inputSize); numCases = size(data, ); % labels row, numCases col
groundTruth = full(sparse(labels, :numCases, ));
cost = ; thetagrad = zeros(numClasses, inputSize); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the cost and gradient for softmax regression.
% You need to compute thetagrad and cost.
% The groundTruth matrix might come in handy. M = theta * data;
M = bsxfun(@minus, M, max(M, [], ));
M = exp(M);
M = bsxfun(@rdivide, M, sum(M));
diff = groundTruth - M; cost = -(/numCases) * sum(sum(groundTruth .* log(M))) + (lambda/) * sum(sum(theta .* theta));
for i=:numClasses
thetagrad(i, :) = -(/numCases) * (sum(data .* repmat(diff(i, :), inputSize, ), ))' + lambda * theta(i, :);
end
% ------------------------------------------------------------------
% Unroll the gradient matrices into a vector for minFunc
grad = [thetagrad(:)];
end

softmaxPredict.m

function [pred] = softmaxPredict(softmaxModel, data)

% softmaxModel - model trained using softmaxTrain
% data - the N x M input matrix, where each column data(:, i) corresponds to
% a single test set
%
% Your code should produce the prediction matrix
% pred, where pred(i) is argmax_c P(y(c) | x(i)). % Unroll the parameters from theta
theta = softmaxModel.optTheta; % this provides a numClasses x inputSize matrix
pred = zeros(, size(data, )); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute pred using theta assuming that the labels start
% from . [~, pred] = max(theta * data); % --------------------------------------------------------------------- end

Accuracy: 92.640%

【DeepLearning】Exercise:Softmax Regression的更多相关文章

  1. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  2. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  3. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  4. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  5. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  6. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 论文速读(Chuhui Xue——【arxiv2019】MSR_Multi-Scale Shape Regression for Scene Text Detection)

    Chuhui Xue--[arxiv2019]MSR_Multi-Scale Shape Regression for Scene Text Detection 论文 Chuhui Xue--[arx ...

随机推荐

  1. scikit-learn的GBDT工具进行特征选取。

    http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...

  2. Pearson(皮尔逊)相关系数

    Pearson(皮尔逊)相关系数:也叫pearson积差相关系数.衡量两个连续变量之间的线性相关程度. 当两个变量都是正态连续变量,而且两者之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数, ...

  3. jsp table 表格单元格编辑示例

    列表单元格: //两个 隐藏的 input, 第一个存 记录 id, 单元格内容是排序码 : <td id="ordinal"><%=ordinal%> & ...

  4. List 集合的交集

    private void Test() { List<string> lsA = new List<string>(); lsA.Add("A"); lsA ...

  5. 牛客网-《剑指offer》-替换空格

    题目:http://www.nowcoder.com/practice/4060ac7e3e404ad1a894ef3e17650423 C++ class Solution { public: vo ...

  6. 微信小程序 - 提示消息组件

    配置挺简单的,也就不说明了,点击下载:alert

  7. vsphere 5.1 性能最佳实践。

    1.关于CPU负载.extop显示的结果 如果CPU load average>=1,说明主机过载了. 如果PCPU used%在80%左右说明良好,90%以上就临近过载了. VM赋予过多的vC ...

  8. SQL Server还原数据库

    http://www.cnblogs.com/ggll611928/p/6377545.html 恢复数据库: 1.分离数据库以断开当前的访问连接. 2.附加数据库mdf文件. 3.执行RESTORE ...

  9. The ECDSA host key for XXX has changed

    运行Hadoop时出现了: 导致运行失败.仔细分析后发现,这是因为以前192.168.1.201的主机名为master,后来把192.168.1.202改名为master,由于两台主机的公钥不一样,所 ...

  10. MongoDB内存管理机制

    目前,MongoDB使用的是内存映射存储引擎,它会把磁盘IO操作转换成内存操作,如果是读操作,内存中的数据起到缓存的作用,如果是写操作,内存还可以把随机的写操作转换成顺序的写操作,总之可以大幅度提升性 ...