核密度估计,或Parzen窗,是非参数估计概率密度的一种。比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最高的类别。

直方图

  首先从直方图切入。对于随机变量$X$的一组抽样,即使$X$的值是连续的,我们也可以划分出若干宽度相同的区间,统计这组样本在各个区间的频率,并画出直方图。下图是均值为0,方差为2.5的正态分布。从分布中分别抽样了100000和10000个样本:

  这里的直方图离散地取了21个相互无交集的区间:$[x-0.5,x+0.5), x=-10,-9,...,10$,单边间隔$h=0.5$。$h>0$在核函数估计中通常称作带宽,或窗口。每个长条的面积就是样本在这个区间内的频率。如果用频率当做概率,则面积除以区间宽度后的高,就是拟合出的在这个区间内的平均概率密度。因为这里取的区间宽度是1,所以高与面积在数值上相同,使得长条的顶端正好与密度函数曲线相契合。如果将区间中的$x$取成任意值,就可以拟合出实数域内的概率密度(其中$N_x$为样本$x_i\in [x-h,x+h),i=1,...,N$的样本数):

$\displaystyle\hat{f}(x)=\frac{N_x}{N}\cdot\frac{1}{2h}$

  这就已经是核函数估计的一种了。显然,抽样越多,这个平均概率密度能拟合得越好,正如蓝条中上方几乎都与曲线契合,而橙色则稂莠不齐。另外,如果抽样数$N\to \infty$,对$h$取极限$h\to 0$,拟合出的概率密度应该会更接近真实概率密度。但是,由于抽样的数量总是有限的,无限小的$h$将导致只有在抽样点处,才有频率$1/N$,而其它地方频率全为0,所以$h$不能无限小。相反,$h$太大的话又不能有效地将抽样量用起来。所以这两者之间应该有一个最优的$h$,能充分利用抽样来拟合概率密度曲线。容易推理出,$h$应该和抽样量$N$有关,而且应该与$N$成反比。

核函数估计

  为了便于拓展,将拟合概率密度的式子进行变换:

$\displaystyle\hat{f}(x)=\frac{N_x}{2hN} = \frac{1}{hN}\sum\limits_{i=1}^{N}\begin{cases}1/2& x-h\le x_i < x+h\\ 0& else \end{cases}$

$\displaystyle = \frac{1}{hN}\sum\limits_{i=1}^{N}\begin{cases} 1/2,& -1\le \displaystyle\frac{x_i-x}{h} < 1\\ 0,& else \end{cases}$

$\displaystyle = \frac{1}{hN}\sum\limits_{i=1}^{N}\displaystyle K(\frac{x_i-x}{h}),\;\; where \; K(x) =\begin{cases} 1/2,& -1\le x < 1\\ 0,& else \end{cases}$

  得到的$K(x)$就是uniform核函数(也又叫方形窗口函数),这是最简单最常用的核函数。形象地理解上式求和部分,就是样本出现在$x$邻域内部的加权频数(因为除以了2,所以所谓“加权”)。核函数有很多,常见的还有高斯核函数(高斯窗口函数),即:

$\displaystyle K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

  各种核函数如下图所示:

核函数的条件

  并不是所有函数都能作为核函数的,因为$\hat{f}(x)$是概率密度,则它的积分应该为1,即:

$\displaystyle\int\limits_{R}\hat{f}(x) dx = \int\limits_{R}\frac{1}{hN}\sum\limits_{i=1}^{N} K(\frac{x_i-x}{h})dx =\frac{1}{hN}\sum\limits_{i=1}^{N} \int_{-\infty}^{\infty} K(\frac{x_i-x}{h})dx$

  令$\displaystyle t = \frac{x_i-x}{h}$

$\displaystyle =\frac{1}{N}\sum\limits_{i=1}^{N} \int_{\infty}^{-\infty} -K(t)dt$

$\displaystyle=\frac{1}{N}\sum\limits_{i=1}^{N} \int_{-\infty}^{\infty} K(t)dt=1$

  因积分部分为定值,所以可得$K(x)$需要的条件是:

$\displaystyle\int_{-\infty}^{\infty} K(x)dx=1$

  通常$K(x)$是偶函数,而且不能小于0,否则就不符合实际了。

带宽选择与核函数优劣

  正如前面提到的,带宽$h$的大小关系到拟合的精度。对于方形核函数,$N\to \infty$时,$h$通常取收敛速度小于$1/N$的值即可,如$h=1/\sqrt{N}$。对于高斯核,有证明指出$\displaystyle h=\left (  \frac{4 \hat{\sigma}^5 }{3N} \right )^{\frac{1}{5}}$时,有较优的拟合效果($\hat{\sigma}^2$是样本方差)。具体的带宽选择还有更深入的算法,具体问题还是要具体分析,就先不细究了。使用高斯核时,待拟合的概率密度应该近似于高斯分布那样连续平滑的分布,如果是像均匀分布那样有明显分块的分布,拟合的效果会很差。我认为原因应该是它将离得很远的样本也用于拟合,导致本该突兀的地方都被均匀化了。

  Epanechnikov在均方误差的意义下拟合效果是最好的。这也很符合直觉,越接近$x$的样本的权重本应该越高,而且超出带宽的样本权重直接为0也是符合常理的,它融合了均匀核与高斯核的优点。

多维情况

  对于多维情况,假设随机变量$X$为$m$维(即$m$维向量),则拟合概率密度是$m$维的联合概率密度:

$\displaystyle \hat{f}(x)= \frac{1}{h^mN}\sum\limits_{i=1}^{N}\displaystyle K(\frac{x_i-x}{h})$

  其中的$K(x)$也变成了$m$维的联合概率密度。另外,既然$\displaystyle\frac{1}{N}\sum\limits_{i=1}^{N} K(\frac{x_i-x}{h})$代表的是概率,$m$维的概率密度自然是概率除以$h^m$而不是$h$。

实验拟合情况

  

非参数估计——核密度估计(Parzen窗)的更多相关文章

  1. 非参数估计:核密度估计KDE

    http://blog.csdn.net/pipisorry/article/details/53635895 核密度估计Kernel Density Estimation(KDE)概述 密度估计的问 ...

  2. R语言与非参数统计(核密度估计)

    R语言与非参数统计(核密度估计) 核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parz ...

  3. parzen 窗的matlab实现

    用一下程序简单实现使用parzen窗对正态分布的概率密度估计: (其中核函数选用高斯核) %run for parzen close all;clear all;clc; x=normrnd(0,1, ...

  4. 作图直观理解Parzen窗估计(附Python代码)

    1.简介 Parzen窗估计属于非参数估计.所谓非参数估计是指,已知样本所属的类别,但未知总体概率密度函数的形式,要求我们直接推断概率密度函数本身. 对于不了解的可以看一下https://zhuanl ...

  5. 机器学习 —— 基础整理(三)生成式模型的非参数方法: Parzen窗估计、k近邻估计;k近邻分类器

    本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-param ...

  6. kdeplot(核密度估计图) & distplot

    Seaborn是基于matplotlib的Python可视化库. 它提供了一个高级界面来绘制有吸引力的统计图形.Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图 ...

  7. 核密度估计 Kernel Density Estimation (KDE) MATLAB

    对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法: 通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布 ...

  8. <轻量算法>根据核密度估计检测波峰算法 ---基于有限状态自动机和递归实现

    原创博客,转载请联系博主! 希望我思考问题的思路,也可以给大家一些启发或者反思! 问题背景: 现在我们的手上有一组没有明确规律,但是分布有明显聚簇现象的样本点,如下图所示: 图中数据集是显然是个3维的 ...

  9. Generative Adversarial Nets (GAN)

    目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成 ...

随机推荐

  1. swoft 上传图片到 阿里云oss aliyun-oss

    1.swoft  获取上传的文件 .官方文档上面没有看到 $files = $request->getUploadedFiles(); $file = $files['file']; 2.在模型 ...

  2. Python xlsxwriter模块

    1.简介: xlsxWriter支持多种excle功能:与excel完美兼容:写大文件,速度快且只占用很小的内存空间不支持读或者改现有的excel文件 2.安装: pip install xlsxwr ...

  3. rabitmq + php

    消费者 <?php //配置信息 $conn_args = array( 'host' => '127.0.0.1', 'port' => '5672', 'login' => ...

  4. go 广度搜索案例(迷宫)

    package main import ( "fmt" "os" ) /* *将文档结构读入到切片中(二维数组) *row, col 行数 列数 (文档第一行数 ...

  5. mysql 多个字段重复记录查询

    select * from productstockquantity t where () ORDER BY t.CombinationI

  6. 详解如何快速使用数据可视化BI软件创建医疗运营监控数据中心大屏

    灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作,无需任何经验就可以创建属于你自己的大屏.大家可以在他们的官网下载软件.   本文以医疗运营监控数据中心大屏 ...

  7. win7系统下的Nodejs开发环境配置

    此处不推荐使用msi安装包直接安装nodejs,我们应该知道它里面做了哪些事情,这样以后出问题的时候,可以更快速地定位问题点.另一方面,直接安装的情况,以后更新了版本的话会很麻烦,因为如果我们想体验新 ...

  8. mysql字段数据类型、设置严格模式

    表操作 今日内容 1.数据类型 建表的时候,字段都有对应的数据类型 整型 浮点型 字符类型(char与varchar) 日期类型 枚举与集合 2.约束条件 primary key unique key ...

  9. 洛谷3388 tarjan割点

    题目链接:https://www.luogu.com.cn/problem/P3388 tarjan算法果然牛逼,时间复杂度是O(|V|+|E|),所以1e4个结点2e5条边的图完全不在话下orz o ...

  10. 李瑞红 201771010111《面向对象程序设计(java)》第一周学习总结

    李瑞红 201771010111<面向对象程序设计(java)>第一周学习总结 第一部分:课程准备部分 填写课程学习 平台注册账号, 平台名称 注册账号 博客园:www.cnblogs.c ...