*Catalog

1. Plotting Vasicek Trajectories

2. CKLS Method for Parameter Estimation (elaborated by GMM and Euler Approx)

3. Application

1. Plotting Vasicek Trajectories

  (1) Basic outlooking:

vasicek <- function(alpha, beta, sigma, n = 100, r0 = 0.026) {
v <- rep(0, n)
v[1] <- r0
for (i in 2:n) {
v[i] <- v[i - 1] + alpha * (beta - v[i - 1]) + sigma * rnorm(1)
}
return(v)
}
set.seed(13)
r <- replicate(3, vasicek(0.02, 0.056, 0.0006))
# plot columns of matrix against columns of another matrix
matplot(r, type = 'l', ylab = '', xlab = 'Time', xaxt = 'no',
main = 'Simulation of Interest Rate Using Vasicek Trajectories')
lines(c(-1, 101), c(0.056, 0.056), col = 'grey', lwd = 2, lty = 1)

  (2) Characteristics:

# change sigma (old sigma is 0.0006)
r <- sapply(c(0, 0.0003, 0.0009),
function(sigma){
set.seed(23); vasicek(0.02, 0.056, sigma)
})
matplot(r, type = 'l', ylab = '', xlab = 'Time', xaxt = 'no',
main = 'Vasicek Simulation with sigma 0, 0.03%, 0.09%')

# change alpha (old alpha is 0.02)
r <- sapply(c(0.002, 0.02, 0.2),
function(alpha){
set.seed(33); vasicek(alpha, 0.056, 0.0006)
})
matplot(r, type = 'l', ylab = '', xlab = 'Time', xaxt = 'no',
main = 'Vasicek Simulation with alpha 0.2%, 2%, 20%')

  (3) Comments:

    This model is a continuous, affine and one-factor stochastic interest rate model.

    It follows a mean-reverting process (expected value converges to beta when Time of alpha goes to infinity (alpha can be treated as speed of adjustment to the     long-run beta). The higher alpha, the earlier reach long-term beta (which input by me as 0.056). As alpha goes infinity, variance converges to 0.


2. Parameter Estimation

  (1) Generalized Method of Moments:

    gamma = 0 in Vasicek model;

    gamma = 0.5 in CIR model (which assumes that volatility term proportional to the square root of the interest rate level; and that interest rate has non-central

     chi-squared distribution);

  (2) Mechanism:

    Denote a vector of parameters to be estimated, theta = (alpha, beta, sigma, gamma);

    Set null hypothesis is : E[ Mt(theta) ] = 0;

    Use a sample corresponding to E[ Mt(theta) ], which is denoted as mt(theta) = (1/n) * Σ Mt(theta), where t from 1 to n, and n is number of observations;

    Introduce omega as a weight matrix, which is symmetric, positive and definite;

    Thus, GMM minimize this quadratic term: mt(theta)Ω(theta)mt(theta);


3. Application 

  (1) Simulate bond prices with different maturities:

library(SMFI5)
a <- bond.vasicek(alpha = 0.5, beta = 2.55, sigma = 0.365, q1 = 0.3, q2 = 0,
r0 = 3.5, n = 1080, maturities = c(1/12, 3/12, 6/12, 1), days = 365)
plot(a)

Derivative Pricing_2_Vasicek的更多相关文章

  1. Derivative of the softmax loss function

    Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\ ...

  2. Derivative of Softmax Loss Function

    Derivative of Softmax Loss Function A softmax classifier: \[ p_j = \frac{\exp{o_j}}{\sum_{k}\exp{o_k ...

  3. XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem A. Arithmetic Derivative

    题目:Problem A. Arithmetic DerivativeInput file: standard inputOutput file: standard inputTime limit: ...

  4. The Softmax function and its derivative

    https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/  Eli Bendersky's website ...

  5. matlab 提示 Continuous sample time is not supported by discrete derivative 错误的解决办法

    Simulink仿真的时候,出行错误提示:Continuous sample time is not supported by discrete derivative 中文意思是:连续采样时间不支持离 ...

  6. [PE484]Arithmetic Derivative

    题意:对整数定义求导因子$'$:$p'=1,(ab)'=a'b+ab'$,求$\sum\limits_{i=2}^n(i,i')$ 这个求导定义得比较妙:$(p^e)'=ep^{e-1}$ 推一下就可 ...

  7. 【找规律】【DFS】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem A. Arithmetic Derivative

    假设一个数有n个质因子a1,a2,..,an,那么n'=Σ(a1*a2*...*an)/ai. 打个表出来,发现一个数x,如果x'=Kx,那么x一定由K个“基础因子”组成. 这些基础因子是2^2,3^ ...

  8. 共变导数(Covariant Derivative)

    原文链接 导数是指某一点的导数表示了某点上指定函数的变化率. 比如,要确定某物体的速度在某时刻的加速度,就取时间轴上下一时刻的一个微小增量,然后考察速度的增量和时间增量的比值.如果这个比值比较大,说明 ...

  9. 求导四则运算以及三角函数求导 Derivative formulas

    对特定函数的求导. 1:sin(x) 对其进行求斜率.带入公式得:[ sin(x+Δx)- sin(x)]/Δx  = [ sinx*cosΔx + cosx*sinΔx -sin x ]/ Δx = ...

随机推荐

  1. CN109241772A发票区块链记录方法、装置、区块链网关服务器和介质(腾讯)

    学习笔记-2 CN109241772A发票区块链记录方法.装置.区块链网关服务器和介质(腾讯) 解决什么问题? 让发票信息记录到区块链的情况下减少发票信息泄露 链上有什么数据? 发行发票事件信息(发票 ...

  2. IOS XE-show memory

    有些时候,我们可能会遇到IOS XE设备的high memory的情况.我们可以使用的命令去查看相关信息. 例如: Router# show version Router# show memory R ...

  3. Java IO流详解(五)——缓冲流

    缓冲流也叫高效流,是处理流的一种,即是作用在流上的流.其目的就是加快读取和写入数据的速度. 缓冲流本身并没有IO功能,只是在别的流上加上缓冲效果从而提高了效率.当对文件或其他目标频繁读写或操作效率低, ...

  4. leetcode 0211

    目录 ✅ 1217. 玩筹码 描述 解答 c java py ✅ 206. 反转链表 描述 解答 c java py ✅ 922. 按奇偶排序数组 II 描述 解答 c 双指针soldier tddo ...

  5. paramiko linux pip18.1

    Collecting paramiko Downloading https://files.pythonhosted.org/packages/cf/ae/94e70d49044ccc234bfdba ...

  6. 对list集合的内容分组

    /** * 把list集合里的内容按照len大小分组 * @param list * @param len * @return */ private static List<List<St ...

  7. 秋招落幕,对自己的总结by2018-10-20

    在今天阿里沟通offer完毕,正式三方也确定了,一切如梦,想想1月的自己还担心未来的自己会花落谁家,到10月的今天,一切尘埃落地.一直不怎么喜欢总结自己的历程,今天无聊的我也总结一波吧. 准确的说没有 ...

  8. How2J学习java-1、环境配置

    JDK环境变量配置分下载,配置,验证三个步骤. 一.首先需要到JDK下载网站下载所需的JDK版本可根据更新来定.主流的开发工具Idear下载. 1.首先看配置成功后的效果 点WIN键->运行(或 ...

  9. 【快学SpringBoot】SpringBoot+Docker构建、运行、部署应用

    前言 Docker技术发展为当前流行的微服务提供了更加便利的环境,使用SpringBoot+Docker部署和发布应用,其实也是一件比较简单的事情.当前,前提是得有Docker的基础. 源码在文末 文 ...

  10. 学习笔记(12)- chatopera的语义理解系统

    参考https://github.com/chatopera/clause-py-demo 前提:安装完毕 Docker.Docker Compose 和 Python3.x git clone ht ...