caffe的python接口学习(6)用训练好的模型caffemodel分类新图片
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测。
我们从mnist数据集的test集中随便找一张图片,用来进行实验。

#coding=utf-8 import caffe
import numpy as np
root='/home/xxx/' #根目录
deploy=root + 'mnist/deploy.prototxt' #deploy文件
caffe_model=root + 'mnist/lenet_iter_9380.caffemodel' #训练好的 caffemodel
img=root+'mnist/test/5/00008.png' #随机找的一张待测图片
labels_filename = root + 'mnist/test/labels.txt' #类别名称文件,将数字标签转换回类别名称 net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network #图片预处理设置
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) #设定图片的shape格式(1,3,28,28)
transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(28,28,3)变为(3,28,28)
#transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) #减去均值,前面训练模型时没有减均值,这儿就不用
transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR im=caffe.io.load_image(img) #加载图片
net.blobs['data'].data[...] = transformer.preprocess('data',im) #执行上面设置的图片预处理操作,并将图片载入到blob中 #执行测试
out = net.forward() labels = np.loadtxt(labels_filename, str, delimiter='\t') #读取类别名称文件
prob= net.blobs['Softmax1'].data[0].flatten() #取出最后一层(Softmax)属于某个类别的概率值,并打印
print prob
order=prob.argsort()[-1] #将概率值排序,取出最大值所在的序号
print 'the class is:',labels[order] #将该序号转换成对应的类别名称,并打印

最后输出 the class is : 5
分类正确。
如果是预测多张图片,可把上面这个文件写成一个函数,然后进行循环预测就可以了。
还有数据可视化的部分,我的电脑没gpu就没搞了,接下来准备学习python廖雪峰的教程,准备快速搞完那个,再找个python处理图像的教程看,熟悉python运作图像。想起来就美滋滋!!!
caffe的python接口学习(6)用训练好的模型caffemodel分类新图片的更多相关文章
- caffe的python接口学习(1):生成配置文件
caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...
- caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...
- caffe的python接口学习(7):绘制loss和accuracy曲线
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...
- caffe的python接口学习(4):mnist实例---手写数字识别
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...
- caffe的python接口学习(4)mnist实例手写数字识别
以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...
- caffe的python接口学习(5):生成deploy文件
如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...
- caffe的python接口学习(1)生成配置文件
---恢复内容开始--- 看了denny的博客,写下自己觉得简短有用的部分 想用caffe训练数据首先要学会编写配置文件: (即便是用别人训练好的模型也要进行微调的,所以此关不可跨越) 代码就不粘贴了 ...
- caffe的python接口学习(5)生成deploy文件
如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...
- caffe的python接口学习(2):生成solver文件
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...
随机推荐
- Chisel3-创建工程并转换为Verilog代码
https://mp.weixin.qq.com/s/ie0R3v60IcrI6beTXHrgSg 基于Intellj IDEA+Scala插件模式开发 因为Chisel内嵌于Scala,所以 ...
- Physic Design:Floorplan算法概览
仅用于学习交流,转载请联系本人. 1 floorplan是什么 floorplan常被翻译成布图规划,是指在芯片级别上对模块进行布局,也就是哪个单元放在什么地方,但是单元内部的具体布局并不关心.该步骤 ...
- Java实现 蓝桥杯 算法训练 数字游戏
试题 算法训练 数字游戏 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 给定一个1-N的排列a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列 ...
- 第四届蓝桥杯JavaC组国(决)赛真题
解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.好好学习 汤姆跟爷爷来中国旅游.一天,他帮助中国的小朋友贴标语.他负责贴的标语是分别写在四块红纸上的四个大字:"好.好.学. ...
- java实现第八届蓝桥杯数位和
数位和 题目描述 数学家高斯很小的时候就天分过人.一次老师指定的算数题目是:1+2+-+100. 高斯立即做出答案:5050! 这次你的任务是类似的.但并非是把一个个的数字加起来,而是对该数字的每一个 ...
- Charles(青花瓷/花瓶)的基本使用
前言 Charles 其实是一款代理服务器,通过成为电脑或者浏览器的代理,然后截取请求和请求结果达到分析抓包的目的.其次该软件是用 Java 写的,能够在 Windows,Mac,Linux 上使用. ...
- Java学习的一般过程
伴随着科学技术的不断发展,世界开始走向信息化.网络化.大数据化.自然而然,计算机专业变得十分热门.尽管如此,计算机专业人才对社会来说仍然是供不应求,当然,这里指的是高层次技术人才.因此,对于我们这些占 ...
- iOS -UIColor随机生成颜色的方法
在iOS 中的UIColor拥有这么多关于颜色的类方法,对于一般常见的UI控件,我们可以通过[UIColorblackColor]设置背景色 eg:设置button 的背景色为红色 UIButton ...
- 05-IntentFilter的匹配规则
IntentFilter的匹配规则 原则上一个Intent不应该既是显示调用又是隐式调用,如果二者共存的话以显式调用为主 隐式调用需要Intent能够匹配目标组件的IntentFilter中所设置的过 ...
- @luogu - P6109@ [Ynoi2009]rprmq
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有一个 n×n 的矩阵 a,初始全是 0,有 m 次修改操作和 ...