图解Knative核心组件Serving基础设计
最近闲下来,打算把Knative的核心组件Serving给学习下,会继续采用k8s源码学习的方式,管中窥豹以小击大,学习serving的主要目标: 可观测性基础设施、自动伸缩、流量管理等核心组件的设计与实现,今天先简单臆测下,感兴趣的同学, 一起来学习吧
1. 基于云原生的单体应用构建
大多数公司的服务可能都已经经过单体、SOA演进到了当下流行的微服务架构,微服务给我们带来了独立演进、扩容、协作、数据自治等便利的背景下,也带来了诸如稳定性保障、维护、服务治理等实际的问题,我们今天来一起来回归单体,比如我们要新开一个业务,新上一个小的模块这个场景,在云原生的场景下,是如何玩的
1.1 云原生下的单体应用
云原生有很多大佬有很多的解释,我就简单理解成是基于云构建而来,可以使用云上所有已知的现有的服务,同时享受云所带来的弹性、按需付费、高可用等方面的原生能力

一个基础的单体应用通常会依赖如下几部分:持久化数据存储、高性能缓存、全文索引、消息队列等常见组件, 各家云厂商大多数会包含这些基础的服务,我们只需要引入对应的类库完成我们的应用逻辑即可, 然后程序就完成代码的coding后,下一步就是交付了
1.2 基于k8s的云原生交付
基于k8s的云原生已经成为一个事实上的标准,将代码和应用的数据打包成docker镜像,基于Pod的交付模式,让我们并不需要关注我们是使用IDC里面的实体机,还是公有云的云服务,我们只需要打包成docker镜像,然后设置好档期环境的配置数据,我们的单体应用就可以运行了, 但是通常我们会有一些非业务需求, 比如监控、日志等, 下一节我们来解决这些问题

1.3 slidecar模式
在应用开发的初期,我们可能并没有考虑监控、日志这种可观测性的需求,通常是在上线的时候才会考虑这些,而基于k8s的云原生的环境下,通常会使用一个slidecar来实现这种基础功能的增强,通过嵌入一个slidecar容器完成这种基础组件的复用,可以基于slidecar模式实现日志、监控、分布式跟踪、Https支持等基础功能,而让上层应用只关注业务逻辑的实现

1.4 服务即基础设施
在公司中通常一个业务往往都会进行一些公司内部系统的接入,比如用户、支付、运营等服务,如果公司的服务也可以与基础设施同等对待,并且这些服务也可以通过k8s的形式进行交付,则我们就可以只关注单体应用自身的扩展(小前台)

通过上面的设想我们构建出了一个基础的单体应用,应用程序只需要关注应用逻辑的编写,全部的业务逻辑都耦合在一个应用内,其余的基础设施、非业务需求全都由其他组件实现,接下来就该部署了,通常我们就需要分配个XHXG配置的Pod,然后为了高可用可能还需要N个replicaset,然后再来个HPA体验下自动伸缩,跑了一段时间可能会发现,可能一天就两个巴掌的访问量,可是依旧占用着N*XHXG的资源,以这个角度我们来进入我们今天的主题Knative
2.Knative

Knative还在不断变化中,一些设计文档也并没有对外开放,读起来就相对k8s难一些,但整体代码量相比较也少了一些,在后续的文章里面我们还是先管中窥豹,逐个组件进行代码阅读,但因为没有相关的Proposal, 主要是参考冬岛大神的相关文章来进行代码的阅读,只是个人理解,如有不对,欢迎指教,接下来我们看看knative是如何完成上面提到的功能与实现按需分配关键组件, 我们从流量入口开始依次介绍各个组件
2.1 基于Istio实现南北向流量的管控
在k8s中南北向流量通常由Ingress来进行管控,而在kantive流量管控的实现,主要是依赖于istio, Istio是一个ServiceMesh框架,Knative中与其集成主要是使用了istio的南北向流量管控的功能,其实就是利用istio对应的ingress的功能, 主要功能分为下面两个部分
2.1.1 版本部署管理

Knative里面支持蓝绿、金丝雀等发布策略,其核心就是通过自己的revision版本管理和istio中的ingress的路由配置功能,即我们可以根据自己的需要设定对应的流量策略,从而进行版本的发布配置管理
2.1.2 自动伸缩(至零)

Knative自动伸缩有两个特点:按需自动分配、缩容至零,按需分配时指的knative可以根据应用的并发能力,来自动计算实现自动扩容,而且整个基本上是秒级,不同于HPA, 其次是就是缩容至零,即可以将对应的业务容器Pod,全部干掉,但是新进入请求之后会立即进行分配,并不影响正常访问(可能初期延迟会相对高一些)
2.2 Queue slidecar

在上面到过可观测性需求,在应用服务中通常可以分为三个部分:日志、监控、分布式跟踪,为了实现这些功能Knative实现了Queue组件,其职责目前理解主要是分为两个部分:完成观测性数据收集、代理业务容器的访问, Queue组件通过代理的方式实现上面提到指标的统计, 并将对应的数据汇报给后端的日志/监控/分布式跟踪服务, 同时还需要向autoscaler同步当前的并发监控, 以便实现自动伸缩功能, Queue主要是代理应用容器, 而Kantive支持缩容至零的特性, 在缩容至零的时候, Knative就会使用一个Activator Pod来替代Queue和应用容器,从而实现缩容至零
2.3 Activator

Activator容器是缩容至零的关键,当业务容器没有访问的时候,Knative就会将对应的ingress流量指向Activator组件,当缩容至零的时候,如果此时又业务请求,Activator会立即通知autoscaler立刻拉起业务容器,并将流量转发真正的业务容器,这样既可以完成流量的无损转发,又可以实现按需付费,再也不用为没有访问量的业务,一直启动着Pod了, Activator并不负责实际的伸缩决策,伸缩组件主要是通过Autoscaler来实现
2.4 Autoscaler
Autoscaler是Knative中实现自动扩容的关键,其通过Activator和Queue两个组件传递过来的监控数据并根据配置来计算,实时动态的调整业务容器的副本数量,从而实现自动伸缩
2.5 Controller
Controller是Knative对应资源的控制器,其本身的功能跟k8s中其他的组件的实现类似,根据资源的当前状态和期望状态来进行一致性调整,从而实现最终一致性
2.6 webhook
Knative是基于k8s的CRD实现的,其webhook主要包含对应资源数据的验证和修改等admission相关
3. 总结

结合上面的组件功能猜想,大概猜想了核心的数据流的实现,如图所示,我们可以分为五层来考虑:观测层(Queue和Activator)、决策层(Autoscaler)、控制层(Controller)、准入层(Webhook)、路由层(Istio INgress), 通过观测层实时获取用户请求数据,发给决策层进行决策,并将决策结果写入到Apiserver, 控制层感知,负责进行对应资源的更新,最终由路由层感知,进行流量分配,这样就实现了整体流量的感知、决策、路由等核心功能,暂时就理解这些,后续希望随着代码的深入,有更深的体会,祝我好运,good luck!
原文 https://www.yuque.com/baxiaoshi/tyado3/up5efq
图解Knative核心组件Serving基础设计的更多相关文章
- tableview前端基础设计(初级版)
tableView前端基础设计 实现的最终效果 操作目的:熟悉纯代码编辑TableView和常用的相关控件SearchBar.NavigationBar.TabBar等,以及布局和基本功能的实现. 一 ...
- 20155219实验四 Android开发基础设计实验报告
20155219实验四 Android开发基础设计实验报告 实验内容 安装Andriod Studio并配置软件 使用Andriod Studio软件实现Hello World!+学号的小程序 实验步 ...
- FPGA基础设计(四):IIC协议
很多数字传感器.数字控制的芯片(DDS.串行ADC.串行DAC)都是通过IIC总线来和控制器通信的.不过IIC协议仍然是一种慢速的通信方式,标准IIC速率为100kbit/s,快速模式速率为400kb ...
- 20155227 《Java程序设计》实验四 Android开发基础设计实验报告
20155227 <Java程序设计>实验四 Android开发基础设计实验报告 任务一 Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二 ...
- 20145219 《Java程序设计》实验四 Android开发基础设计实验报告
20145219 <Java程序设计>实验四 Android开发基础设计实验报告 实验内容 安装Andriod Studio并配置软件 使用Andriod Studio软件实现Hello ...
- 图解kubernetes调度器预选设计实现学习
Scheduler中在进行node选举的时候会首先进行一轮预选流程,即从当前集群中选择一批node节点,本文主要分析k8s在预选流程上一些优秀的筛选设计思想,欢迎大佬们指正 1. 基础设计 1.1 预 ...
- 轻量jquery框架之--组件交互基础设计
概要 组件交互基础,即考虑在JQUERY对象下($)下扩展所有组件都需要用到的通用api,如ajax入口.对表单的操作.html片段加载.通用的配合datagrid通用的curd客户端对象等. 扩展a ...
- Dubbo的核心组件、架构设计与Dubbo面试考点
1.Dubbo是什么? Dubbo 是一个分布式.高性能.透明化的 RPC 服务框架,提供服务自动注册.自动发现等高效服务治理方案, 可以和 Spring 框架无缝集成. RPC 指的是远程调用协议, ...
- DAO层基础设计原理
在实际的开发中有一种项目的程序组织架构方案叫做MVC模式,按照程序 的功能将他们分成三个层,如下图 Modle层(模型层).View层(显示层).Controller层(控制层). Modle层:可以 ...
随机推荐
- vim-1-window,buffer and tab
Summary:A buffer is the in-memory text of a file. A window is a viewport on a buffer. A tab page is ...
- python之道14
看代码写结果: def wrapper(f): def inner(*args,**kwargs): print(111) ret = f(*args,**kwargs) print(222) ret ...
- 给社团同学做的R语言爬虫分享
大家好,给大家做一个关于R语言爬虫的分享,很荣幸也有些惭愧,因为我是一个编程菜鸟,社团里有很多优秀的同学经验比我要丰富的多,这次分享是很初级的,适用于没有接触过爬虫且有一些编程基础的同学,内容主要有以 ...
- 一个完整的机器学习项目在Python中的演练(一)
大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...
- 仅用200个样本就能得到当前最佳结果:手写字符识别新模型TextCaps
由于深度学习近期取得的进展,手写字符识别任务对一些主流语言来说已然不是什么难题了.但是对于一些训练样本较少的非主流语言来说,这仍是一个挑战性问题.为此,本文提出新模型TextCaps,它每类仅用200 ...
- coding++:Arrays.asList() - java.lang.UnsupportedOperationException异常处理
这个异常遇到了才知道坑这么大,坑爹的方法. private String[] otherUserFromArray = new String[]{“3”, “4”, “发放”}; List<St ...
- Java中如何调用静态方法
Java中如何调用静态方法: 1.如果想要调用的静态方法在本类中,可直接使用方法名调用 2.调用其他类的静态方法,可使用类名.方法名调用 关于静态方法能被什么调用 1.实例方法 2.静态发放
- 一次作业过程及其问题的记录:mysql建立数据库、建表、查询和插入等
前言 这次的作业需要我建立一个小的数据库. 这次作业我使用了mysql,进行了建库.建表.查询.插入等操作. 以下是对本次作业相关的mysql操作过程及过程中出现的问题的记录. 正文 作业中对数据库的 ...
- Activiti7新的API介绍
一.Activiti7 的组成部分 Activiti Core 作为Activiti 的核心部分,Activiti Cloud 主要是利用云服务来实现分布式业务流程开发. 二.Activiti 新的 ...
- JAVA设计模式——(2)策略模式
定义 定义一种算法,将每个算法都封装起来,并且使它们之间可以互换.是一种行为类模式. 举例 为了通俗易懂,我们拿各国的税率计算来举例子: 假设当前我们的程序只能支持计算中国和美国的税率: public ...