POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)
http://poj.org/problem?id=3264
Time Limit: 5000MS Memory Limit: 65536K
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
Sample Output
Source
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <math.h>
const int INF=0x3f3f3f3f;
typedef long long LL;
const int mod=1e9+;
//const double PI=acos(-1);
const int maxn=1e5+;
using namespace std;
//ios::sync_with_stdio(false);
// cin.tie(NULL); int n,q;
struct node
{
int l;
int r;
int MAX;
int MIN;
}SegTree[<<]; void PushUp(int rt)
{
SegTree[rt].MAX=max(SegTree[rt<<].MAX,SegTree[rt<<|].MAX);
SegTree[rt].MIN=min(SegTree[rt<<].MIN,SegTree[rt<<|].MIN);
} void Build(int l,int r,int rt)
{
SegTree[rt].l=l;
SegTree[rt].r=r;
if(l==r)
{
scanf("%d",&SegTree[rt].MAX);
SegTree[rt].MIN=SegTree[rt].MAX;
return;
}
int mid=(l+r)>>;
Build(l,mid,rt<<);
Build(mid+,r,rt<<|);
PushUp(rt);
} int Query_MAX(int L,int R,int rt)
{
int l=SegTree[rt].l;
int r=SegTree[rt].r;
if(L<=l&&R>=r)//一次也没有被涂过
{
return SegTree[rt].MAX;
}
int MAX=;
int mid=(l+r)>>;
if(L<=mid)
MAX=max(MAX,Query_MAX(L,R,rt<<));
if(R>mid)
MAX=max(MAX,Query_MAX(L,R,rt<<|));
return MAX;
} int Query_MIN(int L,int R,int rt)
{
int l=SegTree[rt].l;
int r=SegTree[rt].r;
if(L<=l&&R>=r)//一次也没有被涂过
{
return SegTree[rt].MIN;
}
int MIN=INF;
int mid=(l+r)>>;
if(L<=mid)
MIN=min(MIN,Query_MIN(L,R,rt<<));
if(R>mid)
MIN=min(MIN,Query_MIN(L,R,rt<<|));
return MIN;
} int main()
{
scanf("%d %d",&n,&q);
Build(,n,);
for(int i=;i<=q;i++)
{
int a,b;
scanf("%d %d",&a,&b);
printf("%d\n",Query_MAX(a,b,)-Query_MIN(a,b,));
}
return ;
}
#include<iostream>
#include<cstring>
#include<cstdio>
#include<climits>
#include<cmath>
#include<algorithm>
using namespace std; const int N = ;
int FMAX[N][], FMIN[N][]; void RMQ(int n)
{
for(int j = ; j != ; ++j)
{
for(int i = ; i <= n; ++i)
{
if(i + ( << j) - <= n)
{
FMAX[i][j] = max(FMAX[i][j - ], FMAX[i + ( << (j - ))][j - ]);
FMIN[i][j] = min(FMIN[i][j - ], FMIN[i + ( << (j - ))][j - ]);
}
}
}
} int main()
{
int num, query;
int a, b;
while(scanf("%d %d", &num, &query) != EOF)
{
for(int i = ; i <= num; ++i)
{
scanf("%d", &FMAX[i][]);
FMIN[i][] = FMAX[i][];
}
RMQ(num);
while(query--)
{
scanf("%d%d", &a, &b);
int k = (int)(log(b - a + 1.0) / log(2.0));
int maxsum = max(FMAX[a][k], FMAX[b - ( << k) + ][k]);
int minsum = min(FMIN[a][k], FMIN[b - ( << k) + ][k]);
printf("%d\n", maxsum - minsum);
}
}
return ;
}
POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)的更多相关文章
- POJ 3264 Balanced Lineup 区间最值
POJ3264 比较裸的区间最值问题.用线段树或者ST表都可以.此处我们用ST表解决. ST表建表方法采用动态规划的方法, ST[I][J]表示数组从第I位到第 I+2^J-1 位的最值,用二分的思想 ...
- poj 3264 Balanced Lineup 区间极值RMQ
题目链接:http://poj.org/problem?id=3264 For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) alw ...
- POJ 3264.Balanced Lineup-结构体版线段树(区间查询最值)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 53721 Accepted: 25244 ...
- POJ 3264 Balanced Lineup(模板题)【RMQ】
<题目链接> 题目大意: 给定一段序列,进行q次询问,输出每次询问区间的最大值与最小值之差. 解题分析: RMQ模板题,用ST表求解,ST表用了倍增的原理. #include <cs ...
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...
- POJ 3264 Balanced Lineup 【线段树/区间最值差】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 62103 Accepted: 29005 Cas ...
- POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 53703 Accepted: 25237 ...
- POJ - 3264——Balanced Lineup(入门线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 68466 Accepted: 31752 ...
随机推荐
- 关于Pytorch中autograd和backward的一些笔记
参考自<Pytorch autograd,backward详解>: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor. 如果我 ...
- flink和spark Streaming中的Back Pressure
Spark Streaming的back pressure 在讲flink的back pressure之前,我们先讲讲Spark Streaming的back pressure.Spark Strea ...
- Invalid bound statement (not found): com.xxxx.dao.other.LoginDao.getUser"
原来是能正常运行的,后想把登录相关的调整一下目录,对应登录的文件都调整到了other下边,启动服务,请求时报错: Invalid bound statement (not found): com.xx ...
- Spring框架之一 读取配置文件
以下代码都是来源于官方源码(Spring-4.3.18.RELEASE),此处只是为自己以后深啃先布局出大概流程,请各看官不要浪费时间看 说明: .. 表示省略代码, // 后的如果不是源码自带则为当 ...
- OGG实验:喂奶间隔数据表通过OGG配置同步
我之前在<使用SQL计算宝宝每次吃奶的时间间隔(数据保障篇)>中提到数据实时同步的方案,其中有一种是数据表通过OGG进行同步,当时没有详细展开测试,只给了之前学习OGG时的配置示例.由于之 ...
- XML文件读写编码不是UTF-8的问题
FileWriter和FileReader在写.读文件时,使用系统当前默认的编码方式. 在中文win下encoding基本是GB2312,在英文win下基本是ISO-8859-1.所以要创建一个UTF ...
- transform—3D立方体
1.思路分析 第一步:首先需要一个大盒子,承载立方体的六个面: 第二步:立方体的六个面需要3D转化在特定的位置,拼接成一个立方体: 第三步:设置动画: 2.代码实现 第一步:创建div并且设置样式: ...
- vivado下创建基本时序周期约束
创建基本时钟周期约束.(验证我们的设计能否在期望的频率上运行) (学习记录,晚一点会做实验传上来的.) 时钟基本概念:https://blog.csdn.net/wordwarwordwar/arti ...
- Linux中Tomcat 自动设置CATALINA_HOME方法
Linux中Tomcat 自动设置CATALINA_HOME方法 在服务器部署中,我们经常会出现“在一个服务器上运行多个tomcat服务”的情况. 使用如下方法设置,可以无限复制平移扩展Tomcat, ...
- OpenMP笔记(五)
任务调度主要用于并行的for循环中,当循环中每次迭代的计算量不相等时,如果简单地给各个线程分配相同次数的迭代的话,会造成各个线程计算负载不均衡,这会使得有些线程先执行完,有些后执行完,造成某些CPU核 ...