前言

这道题目呢,看上去很难,实际上我们可以用线段树解决这道题目。

正文

我们维护 sumlentaglmaxrmaxans

sum 就是这段区间非脑洞的个数

len 就是这段区间的长度

tag 就是我们的 lazy_tag

lmax 就是从左开始的连续脑洞个数

rmax 就是从右开始的连续脑洞个数

ans 就是这段区间最大的连续脑洞

建树

由于 len 是不变的,所以我们可以建树的时候就求出 len

t[num].len=r-l+1;

pushup

sum

sum 就是左子树和右子树的 sum 的和。

t[num].sum=t[ls].sum+t[rs].sum;

lmax

lmax 的话有两种情况

第 \(1\) 种情况

lmax=左子树的 lmax

第 \(2\) 中情况

lmax=左子树的 len + 右子树的 lmax

if(t[ls].lmax==t[ls].len)t[num].lmax=t[ls].len+t[rs].lmax;
else t[num].lmax=t[ls].lmax;

rmax

rmax 的话也两种情况

第 \(1\) 种情况

rmax=右子树的 rmax

lmax=右子树的 len + 左子树的 rmax

if(t[rs].rmax==t[rs].len)t[num].rmax=t[rs].len+t[ls].rmax;
else t[num].rmax=t[rs].rmax;

ans

ans 的话有 \(3\) 种情况

第 \(1\) 种情况

ans=左子树的 ans

第 \(2\) 种情况

ans=右子树的 ans

第 \(3\) 种情况

ans=左子树的 rmax+右子树的 lmax

t[num].ans=max(max(t[ls].ans,t[rs].ans),t[ls].rmax+t[rs].lmax);

pushdown

tag

我们的 tag3 种值,分别为 012

0 表示什么都没有

1 表示全部为脑洞

2 表示全部不为脑洞

0

0 的话,代表没有任何操作,不要管。

1

我们对照上面的发现:

anslmaxrmax 都为 len

sum 则为 0

tag 的标记当然要打啦。

void down1(int num){
t[num].ans=t[num].lmax=t[num].rmax=t[num].len;
t[num].sum=0;
t[num].tag=1;
}
2

我们对照上面的发现:

anslmaxrmax 都为 0

sum 则为 len

tag 的标记当然要打啦。

void down2(int num){
t[num].ans=t[num].lmax=t[num].rmax=0;
t[num].sum=t[num].len;
t[num].tag=2;
}

二分

我们可以发现,操作 2 就是先统计一遍 \([l0,r0]\) 中非脑洞的个数。

然后把 \([l0,r0]\) 这段区间全部变成脑洞,再去在 \([l1,r1]\) 这段区间里找到从 \(l0\) 开始算起最右边脑洞个数 \(\leq[l0,r0]\) 中脑洞的个数。

我们发现脑洞个数是单调递增的,所以我们可以二分。

我采用的写法是左闭右开。

void work(){
int x=query0(1,l0,r0);//统计
if(x==0)return;//这里要注意,否则我们的边界就是错的
change(1,l0,r0,1);//全部变成脑洞
int l=l1,r=r1+1;//二分的边界
while(l+1<r){//经典写法
int mid=(l+r)>>1;//求mid
if(query1(1,l1,mid)<=x)l=mid;//小于等于
else r=mid;
}
change(1,l1,l,2);//填上去
}

代码

复杂度 \(O(n \log n + q \log^2 n)\)

#include <bits/stdcpp.h>
#define ls num<<1
#define rs num<<1|1
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &FF){
T RR=1;FF=0;char CH=getchar();
for(;!isdigit(CH);CH=getchar())if(CH=='-')RR=-1;
for(;isdigit(CH);CH=getchar())FF=(FF<<1)+(FF<<3)+(CH^48);
FF*=RR;
}
template<typename T>inline void write(T x){
if(x<0)putchar('-'),x*=-1;
if(x>9)write(x/10);
putchar(x%10+48);
}
template<typename T>inline void writen(T x){
write(x);
puts("");
}
const int N=2e5+10;
struct Tree{
int l,r,lmax,rmax,sum,tag,len,ans;
}t[N<<2];
int n,m,l0,r0,l1,r1,f;
void pushup(int num){
t[num].sum=t[ls].sum+t[rs].sum;
if(t[ls].lmax==t[ls].len)t[num].lmax=t[ls].len+t[rs].lmax;
else t[num].lmax=t[ls].lmax;
if(t[rs].rmax==t[rs].len)t[num].rmax=t[rs].len+t[ls].rmax;
else t[num].rmax=t[rs].rmax;
t[num].ans=max(max(t[ls].ans,t[rs].ans),t[ls].rmax+t[rs].lmax);
}
void down1(int num){
t[num].ans=t[num].lmax=t[num].rmax=t[num].len;
t[num].sum=0;
t[num].tag=1;
}
void down2(int num){
t[num].ans=t[num].lmax=t[num].rmax=0;
t[num].sum=t[num].len;
t[num].tag=2;
}
void pushdown(int num){
if(t[num].tag==1){
down1(ls);down1(rs);
t[num].tag=0;
}
if(t[num].tag==2){
down2(ls);down2(rs);
t[num].tag=0;
}
}
void build(int num,int l,int r){
t[num].tag=0;
t[num].l=l;
t[num].r=r;
t[num].len=r-l+1;
if(l==r){
t[num].sum=1;
t[num].ans=t[num].lmax=t[num].rmax=0;
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(num);
}
void change(int num,int x,int y,int z){
if(t[num].l>=x&&t[num].r<=y){
if(z==1)down1(num);
if(z==2)down2(num);
return;
}
pushdown(num);
if(t[ls].r>=x)change(ls,x,y,z);
if(t[rs].l<=y)change(rs,x,y,z);
pushup(num);
}
int query0(int num,int x,int y){
if(t[num].l>=x&&t[num].r<=y)return t[num].sum;
pushdown(num);
if(t[ls].r<x)return query0(rs,x,y);
if(t[rs].l>y)return query0(ls,x,y);
return query0(ls,x,y)+query0(rs,x,y);
}
int query1(int num,int x,int y){
if(t[num].l>=x&&t[num].r<=y)return t[num].len-t[num].sum;
pushdown(num);
if(t[ls].r<x)return query1(rs,x,y);
if(t[rs].l>y)return query1(ls,x,y);
return query1(ls,x,y)+query1(rs,x,y);
}
void work(){
read(l1);read(r1);
int x=query0(1,l0,r0);
if(x==0)return;
change(1,l0,r0,1);
int l=l1,r=r1+1;
while(l+1<r){
int mid=(l+r)>>1;
if(query1(1,l1,mid)<=x)l=mid;
else r=mid;
}
change(1,l1,l,2);
}
int query2(int num,int x,int y){
if(t[num].l>=x&&t[num].r<=y)return t[num].ans;
pushdown(num);
if(t[ls].r<x)return query2(rs,x,y);
if(t[rs].l>y)return query2(ls,x,y);
return max(max(query2(ls,x,y),query2(rs,x,y)),min(t[ls].rmax,t[rs].l-x)+min(t[rs].lmax,y-t[ls].r));
}
int main(){
read(n);read(m);
build(1,1,n);
while(m--){
read(f);read(l0);read(r0);
switch(f){
case 0:change(1,l0,r0,1);break;
case 1:work();break;
case 2:writen(query2(1,l0,r0));break;
}
}
return 0;
}

拓展

这道题目还有更优秀的解法,复杂度可以少掉一个 \(\log\) 也就是变成 \(O(n \log n+q \log{n})\)。

我们还是先统计非脑洞个数。

我们写一个函数 \(fill\) 就是我们用来把脑细胞填入脑洞的函数。我们要填 \(x\) 个脑细胞,会发现有 \(2\) 种情况。

  • 第 \(1\) 种情况是所有脑细胞都填入左子树。

  • 第 \(2\) 种情况是所有脑细胞不仅把左边填满,还有多的放到右子树。

我们可以根据这个写代码:

int fill(int num,int l,int r,int x){//fill的返回值就是剩余的脑细胞数量
if(x==0)return 0;
if(t[num].l>=l&&t[num].r<=r&&t[num].sum<=x){
int s=t[num].sum;//务必要先存起来
down2(num);
return x-s;
}
pushdown(num);int ans;
if(t[ls].r<l)ans=fill(rs,l,r,x);
else if(t[rs].l>r)ans=fill(ls,l,r,x);
else ans=fill(rs,l,r,fill(ls,l,r,x));
pushup(num);
return ans;//答案
}

题解 P4344 【[SHOI2015]脑洞治疗仪】的更多相关文章

  1. 【题解】Luogu P4344 [SHOI2015]脑洞治疗仪

    原题传送门:P4344 [SHOI2015]脑洞治疗仪 前置芝士:珂朵莉树 窝博客里对珂朵莉树的介绍 没什么好说的自己看看吧 珂朵莉树好题啊 我一开始一直Re65 后来重构代码就ac了,或许是rp问题 ...

  2. 洛谷P4344 [SHOI2015]脑洞治疗仪(珂朵莉树)

    传送门 看到区间推倒……推平就想到珂朵莉树 挖脑洞直接assign,填坑先数一遍再assign再暴力填,数数的话暴力数 //minamoto #include<iostream> #inc ...

  3. 洛谷 P4344 [SHOI2015]脑洞治疗仪

    题意简述 维护序列,支持以下操作: 0 l r:将l~r赋为0 1 l1 r1 l2 r2:将l1~r1中的1替换l2~r2中的0,多余舍弃 2 l r:询问l~r中最大连续1的长度 题解思路 珂朵莉 ...

  4. 洛谷P4344 [SHOI2015]脑洞治疗仪(ODT)

    题意 题目链接 Sol ODT板子题. 操作1直接拆区间就行. #include<bits/stdc++.h> #define fi first #define se second con ...

  5. 【BZOJ4592】[Shoi2015]脑洞治疗仪 线段树

    [BZOJ4592][Shoi2015]脑洞治疗仪 Description 曾经发明了自动刷题机的发明家SHTSC又公开了他的新发明:脑洞治疗仪--一种可以治疗他因为发明而日益增大的脑洞的神秘装置. ...

  6. [SHOI2015]脑洞治疗仪(恶心的线段树,区间最大子段和)

    题目描述: 曾经发明了自动刷题机的发明家 SHTSC 又公开了他的新发明:脑洞治疗仪--一种可以治疗他因为发明而日益增大的脑洞的神秘装置. 为了简单起见,我们将大脑视作一个 01 序列.11代表这个位 ...

  7. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  8. 【[SHOI2015]脑洞治疗仪】

    我太sb啦 合并的时候又漏了,又漏了,又漏了 我个sb 这是个板子题,并不知道为什么SHOI2015会考这么板子的题,但是我又sb了,又sb了,又sb了,又没有1A 显然我是凉了 这道题有三个操作 区 ...

  9. bzoj 4592(洛谷 4344) [Shoi2015]脑洞治疗仪——线段树上二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4592 1操作就是用线段树来二分找到第一个有 k 个0的位置. 在洛谷上A了,与暴力和网上题解 ...

随机推荐

  1. 美团新零售招聘-高级测试开发(20k-50k/月)

    内推邮箱:liuxinguang@meituan.com 地点:北京 职位级别:p2-2以上级别 15.5薪

  2. coreseek 在gcc 4.9+ 上编译不通过 [sphinxexpr.o] Error 1 错误解决方案

    这几天玩hhvm,把gcc环境都装到4.9了,然后编译coreseek的时候就出问题,google一大圈,貌似捕风捉影看到一些信息说是gcc4.7+的c++作用域必须用this->去引用,这里整 ...

  3. AI入门之KNN算法学习

    一.什么是KNN算法 kNN(k-NearestNeighbor),也就是k最近邻算法.顾名思义,所谓K最近邻,就是k个最近的邻居的意思.也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代 ...

  4. 一文看懂js中元素的客户区大小(clientWidth,clientHeight)

    元素的客户区 元素的客户区大小,指的是元素内容及其内边距所占据的空间大小. 相关属性如下: 1. clientWidth:元素内容区宽度+元素左右内边距 2. clientHeight:元素内容区高度 ...

  5. 【推荐算法工程师技术栈系列】分布式&数据库--tensorflow

    目录 TensorFlow 高阶API Dataset(tf.data) Estimator(tf.estimator) FeatureColumns(tf.feature_column) tf.nn ...

  6. frida报错frida.InvalidArgumentError: device not found问题解决方案

    一.问题描述     python安装好frida框架后,在安卓端启动了frida-server,启动要hook的应用,在cmd中执行python脚本,报错frida.InvalidArgumentE ...

  7. Matplotlib数据可视化(6):饼图与箱线图

    In [1]: from matplotlib import pyplot as plt import numpy as np import matplotlib as mpl mpl.rcParam ...

  8. C语言程序设计(十二) 结构体和共用体

    第十二章 结构体和共用体 当需要表示复杂对象时,仅使用几个基本数据类型显然是不够的 根本的解决方法是允许用户自定义数据类型 构造数据类型(复合数据类型)允许用户根据实际需要利用已有的基本数据类型来构造 ...

  9. vlc 播放器的点播和广播服务

    vlc 是一个开源的,同时跨平台的播放器.在研究 rtsp 协议时发现,它同时还是一个强大的流媒体服务器 VLM VLM(VideoLAN Manager) 在 vlc 中是一个小型的媒体管理器,它能 ...

  10. SIP压力测试——奇林软件kylinPET

    一.Sip协议简介: SIP(Session Initiation Protocol,会话初始协议)是由IETF(Internet Engineering Task Force,因特网工程任务组)制定 ...