这次来训练一个基于CNN的语音识别模型。训练完成后,我们将尝试将此模型用于Hotword detection。

人类是怎样听懂一句话的呢?以汉语为例,当听到“wo shi”的录音时,我们会想,有哪两个字是读作“wo shi”的,有人想到的是“我是”,也有人觉得是“我市”。
我们可以通过”wo shi”的频率的特征,匹配到一些结果,我们这次要训练的模型,也是基于频率特征的CNN模型。单纯的基于频率特征的识别有很大的局限性,比如前面提到的例子,光是听到“wo shi”可能会导致产生歧义,但是如果能有上下文,我们就可以大大提高“识别”的成功率。因此,类似Google Assistant那样的识别,不光是考虑到字词的发音,还联系了语义,就算有一两个字发音不清,我们还是能得到正确的信息。
但是基于频率特征的模型用作Hotword detection还是比较合适的,因为Horword通常是一两个特定的词,不需要联系语境进行语义分析。

准备训练数据集

开源的语言数据集比较少,这里我们使用TensorFlow和AIY团队推出的一个数据集,包含30个基本的英文单词的大量录音:
下载地址
这个数据集只有1G多,非常小的语音数据集,不过用来实验是完全够的。

运行docker并挂载工作目录

新建一个speech_train文件夹,并在其中创建子文件夹dataset,logs,train,它们将用于存放数据集,log和训练文件。解压数据集到dataset,然后运行docker:

1
2
docker run -it -v $(pwd)/speech_train:/speech_train 
gcr.io/tensorflow/tensorflow:latest-devel

使用默认的conv模型开始训练

1
2
3
4
5
6
cd /tensorflow/
python tensorflow/examples/speech_commands/train.py
--data_dir=/speech_train/dataset/
--summaries_dir=/speech_train/logs/
--train_dir=/speech_train/train/
--wanted_words=one,two,three,four,five,marvin

在这里我们指定希望识别的label: one,two,three,four,five,marvin。数据集的其他部分将被归为unknown

使用TensorBoard使训练可视化

我们可以通过分析生成的log使训练过程可视化:

1
大专栏  使用TensorFlow训练自己的语音识别AI class="line">tensorboard --logdir /speech_train/logs

运行指令后,可以通过浏览器访问本地的6006端口进入TensorBoard。下图是使用conv模型完成18000 steps 训练的过程图:

训练花了差不多15个小时。

生成pb文件

训练完成后,我们需要将其转化为pb文件:

1
2
3
4
python tensorflow/examples/speech_commands/freeze.py 
--start_checkpoint=/speech_train/train/conv.ckpt-18000
--output_file=/speech_train/conv.pb
--wanted_words=one,two,three,four,five,marvin

完成后,我们将得到一个名为conv.pb的文件,配合包含可识别label的txt文件就可以直接使用了。

测试

使用测试脚本进行测试:

1
2
3
4
python tensorflow/examples/speech_commands/label_wav.py 
--graph=/speech_train/conv.pb
--labels=/speech_train/conv_labels.txt
--wav=/speech_train/dataset/marvin/0b40aa8e_nohash_0.wav

训练的模型应能正确识别出marvin。

使用准确度较低但是预测更快的low_latency_conv模型

我们可以使用另外一种准确度较低但是预测更快的low_latency_conv模型进行训练:

1
2
3
4
5
6
7
8
python tensorflow/examples/speech_commands/train.py 
--data_dir=/speech_train/dataset/
--summaries_dir=/speech_train/logs/
--train_dir=/speech_train/train/
--model_architecture=low_latency_conv
--how_many_training_steps=20000,6000
--learning_rate=0.01,0.001
--wanted_words=one,two,three,four,marvin,wow

当使用该模型时,可以适当增加training steps和learning rate。在这种情况下,训练的时间大大缩短了:

只花了不到3小时.

其他

也可以使用gpu版本的tensorflow进行训练,速度可以提升不少哦。

使用TensorFlow训练自己的语音识别AI的更多相关文章

  1. 大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app

    大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app ( 本文内容为melodyWxy原作,git地址:https://github.com/melodyWx ...

  2. 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练

    将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...

  3. 自己搞了20万张图片100个分类,tensorflow训练23万次后。。。。。。

    自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次 ...

  4. tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了

    tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 ...

  5. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  6. tensorflow训练验证码识别模型

    tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: ...

  7. TensorFlow训练MNIST报错ResourceExhaustedError

    title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...

  8. TensorFlow.训练_资料(有视频)

    ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow ...

  9. 课程报名 | 基于模型训练平台快速打造 AI 能力

    我们常说的 AI 通用能力往往不针对具体的行业应用,而是主要解决日常或者泛化的问题,很多技术企业给出的方案是通用式的,比如通用文字识别,无论识别身份证.驾驶证.行驶证等,任何一张图片训练后的模型都会尽 ...

随机推荐

  1. iOS筛选菜单、分段选择器、导航栏、悬浮窗、转场动画、启动视频等源码

    iOS精选源码 APP启动视频 自定义按钮,图片可调整图文间距SPButton 一款定制性极高的轮播图,可自定义轮播图Item的样式(或只... iOS 筛选菜单 分段选择器 仿微信导航栏的实现,让你 ...

  2. web开发相关工具总结

    系统: linux -ssh工具:secureCRT ,PUTTY,XSHELL MYSQl: mysql客户端 ,mysqlworkbench, navicat for mysql ,phpmyad ...

  3. IMX6开发板虚拟机加载Ubuntu12.04.2镜像

    基于迅为IMX6开发板安装好虚拟机之后,用户就可以加载 Ubuntu12.04.2 镜像.用户可以在网盘中下载“编译好的镜像”,该镜像已经安装好了编译 Android4.4.2 所需要的大部分软件.用 ...

  4. vim下看C++代码

    看C++代码, 缺少合适的编辑器,捣鼓vim. 安装Vundle, 用于插件管理 git clone https://github.com/VundleVim/Vundle.vim.git ~/.vi ...

  5. linux 线程间发送信号

    线程间通过 pthread_kill(thid,signo)给指定的thid线程发送signo信号. 创建线程与线程屏蔽字顺序 1. pthread_create();    pthread_sigm ...

  6. Java注解基础

    0.背景 Java注解--Annotation产生于JDK5.作为code的特殊“标记”,注解可以在编译.类加载.运行时被读取,并执行处理. 开发利用注解在源码中嵌入补充信息,工具(代码分析.开发.部 ...

  7. fibonacci-Heap(斐波那契堆)原理及C++代码实现

    斐波那契堆是一种高级的堆结构,建议与二项堆一起食用效果更佳. 斐波那契堆是一个摊还性质的数据结构,很多堆操作在斐波那契堆上的摊还时间都很低,达到了θ(1)的程度,取最小值和删除操作的时间复杂度是O(l ...

  8. rest framework-版本-长期维护

    ###############  版本   ############### # # 版本的问题: # rest_framework.versioning.URLPathVersioning # 一般就 ...

  9. 关于VLC无法播放rtsp的问题分析

    我之前有一篇博客说,怎么通过vlc查日志,方法不知道是不是特别好,传送门:https://www.cnblogs.com/132818Creator/p/11136714.html 虽然在调试窗口上提 ...

  10. 基于STC89C516的多游戏实现

    所用器件:STC89C516,矩阵键盘,LCD1602,16*16点阵,74HC595,无源蜂鸣器,晶振为11.0592MHZ 使用说明: 开机(复位)进入启动界面,1602显示Welcome.500 ...