使用TensorFlow训练自己的语音识别AI
这次来训练一个基于CNN的语音识别模型。训练完成后,我们将尝试将此模型用于Hotword detection。
人类是怎样听懂一句话的呢?以汉语为例,当听到“wo shi”的录音时,我们会想,有哪两个字是读作“wo shi”的,有人想到的是“我是”,也有人觉得是“我市”。
我们可以通过”wo shi”的频率的特征,匹配到一些结果,我们这次要训练的模型,也是基于频率特征的CNN模型。单纯的基于频率特征的识别有很大的局限性,比如前面提到的例子,光是听到“wo shi”可能会导致产生歧义,但是如果能有上下文,我们就可以大大提高“识别”的成功率。因此,类似Google Assistant那样的识别,不光是考虑到字词的发音,还联系了语义,就算有一两个字发音不清,我们还是能得到正确的信息。
但是基于频率特征的模型用作Hotword detection还是比较合适的,因为Horword通常是一两个特定的词,不需要联系语境进行语义分析。
准备训练数据集
开源的语言数据集比较少,这里我们使用TensorFlow和AIY团队推出的一个数据集,包含30个基本的英文单词的大量录音:
下载地址
这个数据集只有1G多,非常小的语音数据集,不过用来实验是完全够的。
运行docker并挂载工作目录
新建一个speech_train文件夹,并在其中创建子文件夹dataset,logs,train,它们将用于存放数据集,log和训练文件。解压数据集到dataset,然后运行docker:
1 |
docker run -it -v $(pwd)/speech_train:/speech_train |
使用默认的conv模型开始训练
1 |
cd /tensorflow/ |
在这里我们指定希望识别的label: one,two,three,four,five,marvin。数据集的其他部分将被归为unknown
使用TensorBoard使训练可视化
我们可以通过分析生成的log使训练过程可视化:
1 |
大专栏 使用TensorFlow训练自己的语音识别AI class="line">tensorboard --logdir /speech_train/logs |
运行指令后,可以通过浏览器访问本地的6006端口进入TensorBoard。下图是使用conv模型完成18000 steps 训练的过程图:
训练花了差不多15个小时。
生成pb文件
训练完成后,我们需要将其转化为pb文件:
1 |
python tensorflow/examples/speech_commands/freeze.py |
完成后,我们将得到一个名为conv.pb的文件,配合包含可识别label的txt文件就可以直接使用了。
测试
使用测试脚本进行测试:
1 |
python tensorflow/examples/speech_commands/label_wav.py |
训练的模型应能正确识别出marvin。
使用准确度较低但是预测更快的low_latency_conv模型
我们可以使用另外一种准确度较低但是预测更快的low_latency_conv模型进行训练:
1 |
python tensorflow/examples/speech_commands/train.py |
当使用该模型时,可以适当增加training steps和learning rate。在这种情况下,训练的时间大大缩短了:
只花了不到3小时.
其他
也可以使用gpu版本的tensorflow进行训练,速度可以提升不少哦。
使用TensorFlow训练自己的语音识别AI的更多相关文章
- 大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app
大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app ( 本文内容为melodyWxy原作,git地址:https://github.com/melodyWx ...
- 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...
- 自己搞了20万张图片100个分类,tensorflow训练23万次后。。。。。。
自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次 ...
- tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了
tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 ...
- 2、TensorFlow训练MNIST
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...
- tensorflow训练验证码识别模型
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: ...
- TensorFlow训练MNIST报错ResourceExhaustedError
title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...
- TensorFlow.训练_资料(有视频)
ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow ...
- 课程报名 | 基于模型训练平台快速打造 AI 能力
我们常说的 AI 通用能力往往不针对具体的行业应用,而是主要解决日常或者泛化的问题,很多技术企业给出的方案是通用式的,比如通用文字识别,无论识别身份证.驾驶证.行驶证等,任何一张图片训练后的模型都会尽 ...
随机推荐
- a标签的一些特殊使用
<a href="tel:10086">10086</a> //点击后直接拨打10086 <a href="mailto:c1586@qq ...
- 6)PHP,预定义变量
预定义变量也叫超全局变量: :预定义变量又叫超全局变量,包括: $_GET, $_POST, $_SERVER, $_REQUEST, $GLOBALS, $_COOKIE, $_SESSION, . ...
- /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.212.b04-0.el7_6.x86_64/bin/java: No such file or directory
在linux使用两个tomcat的时候, 执行./shutdown.sh的时候, 遇到了这个问题 这个可怎么办呢 原来是我的java下面的文件目录是/java-1.8.0-openjdk-1.8.0. ...
- Hive(二)—— 架构设计
Hive架构 Figure 1 also shows how a typical query flows through the system. 图一显示一个普通的查询是如何流经Hive系统的. Th ...
- 关于TensorFlow2的tf.function()和AutoGraph的一些问题解决
在使用TensorFlow的AutoGraph的时候出现了一些问题,特此记录 AutoGraph did not convert this function. Try decorating it di ...
- IMX6开发板Qtopia2.2.0开发环境搭建以及编译镜像
搭建 Qtopia2.2.0 开发环境,需要先搭建 Android 的编译环境,然后在 Android 编译环境的基础上,再搭建 Qtopia2.2.0 编译环境.以下内容基于迅为-iMX6开发板.Q ...
- SwaggerConfig
package me.zhengjie.common.swagger2; import com.google.common.base.Predicates; import org.springfram ...
- PAT甲级——1061 Dating
1061 Dating Sherlock Holmes received a note with some strange strings: Let's date! 3485djDkxh4hhGE 2 ...
- Wanna go back home
题目描述 Snuke lives on an infinite two-dimensional plane. He is going on an N-day trip. At the beginnin ...
- 2018安卓巴士开发者大会打造Android技术盛宴
2018安卓巴士开发者大会打造Android技术盛宴2018安卓巴士开发者大会将于8月25日在上海举行,作为中国最具前沿性.专业性的安卓技术会议,将邀请来自爱奇艺.阿里.饿了么等知名企业的一线工程师分 ...