[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane
Exercises 3.2
21.
(a). For $\omega = sinz$, what is the image of the semi-infinite strip
$S_1 = \{x+iy|-\pi<x<\pi,y>0\}$
(b). what is the image of the smaller semi-infinite strip
$S_2 = \{x+iy|-\frac{\pi}{2}<x<\frac{\pi}{2},y>0\}$
Solutions:
First of all, let's assume $z = x + iy$, then expand the $\omega$,
$sin(x+iy)=sinx\cdot coshy+icosx\cdot sinhy$
In addition, observe closely, we will find that it's really hard to draw the $w-plane$, whatever the method we use, including "Freeze" Variable and expressing the formula in terms of $\displaystyle e^z$. But now, we can use the concept linear independence on functions to solve the problems!
Namely, if we assume $f=sinx\cdot coshy$,$g=cosx\cdot sinhy$, the value of $g$ doesn't affect that of $f$! OR, the other way round.
Proof: let's assume $c_1,c_2 \in C$, and $c_1 f+c_2 g = 0$,then
$c_1 tanx \cdot tanhy+c_2=0$
if, $c_1 \ne 0$, we have $\displaystyle tanx\cdot tanhy + \frac{c_2}{c_1}=0$. Since $x, y$ vary freely in the interval, it's quite obvious that it's impossible for $c_1$ to be $0$.
Thus, $c_1 = 0$, and $c_2 = 0$.
So, to draw the picture of $\omega$, we just need to find the range of $f$ and $g$.
The remaining parts are left for the readers.
[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane的更多相关文章
- 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl
因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Compl ...
- A brief introduction to complex analysis
\(\underline{Def:}\)A func \(U(\subset \mathbb{C}) \stackrel{f}\longrightarrow \mathbb{C}\)is (compl ...
- java 实现傅立叶变换算法 及复数的运算
最近项目需求,需要把python中的算法移植到java上,其中有一部分需要用到复数的运算和傅立叶变换算法,废话不多说 如下: package qrs; /** * 复数的运算 * */ public ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- How to do Mathematics
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents
I find it may cost me so much time in doing such solutions to exercises and problems....I am sorry t ...
- Foundations of Game Engine Development Volume 1 Mathematics (Eric Lengyel 著)
http://www.foundationsofgameenginedev.com/ Chapter1 Vectors and Matrices (已看) Chapter2 Transforms (已 ...
- Machine Learning Trick of the Day (1): Replica Trick
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machi ...
随机推荐
- Python栈溢出【新手必学】
python3.5.4 递归函数最恶心的时候莫非栈溢出(Stack overflow).PS:另外很多人在学习Python的过程中,往往因为没有好的教程或者没人指导从而导致自己容易放弃,为此我建了个P ...
- 机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今 ...
- Masonry与UITableView+FDTemplateLayoutCell搭配使用
打个小广告:本人开发了一个宠物相关的App,欢迎大家下载体验~ 下载二维码: 进入正文: 之前发过一篇博客,也是对这两个的练习使用,但是之后遇到些问题,所以删除重写了.抱歉 Masonry是一款轻量级 ...
- Sweet Round 1题解
感谢各位参赛者,所有的题解如下: T1 syx的奖励 这题明显是签到题了吧,随便猜猜结论就A掉了 先说怎么做吧,把所有的可走的数gcd起来,然后再与n求gcd 如果为1,则输出n,若不为1,则输出-1 ...
- Windows驱动开发-符号链接和设备名
windows下的设备是以"\Device\[设备名]”形式命名的. 例如磁盘分区的C盘,D盘的设备名称就是 "\Device\HarddiskVolume2” "\De ...
- Tomcat删除时问题——eclipse部署tomcat时弹出Resource'/Servers' does not exist
如果你删除一个项目的Servers文件,或者相应文件损坏等,会出现错误, Resource '/Servers' does not exist 那么就需要把它在控制台出的Servers下所部署的Tom ...
- delphi保存和提取ini文件信息
procedure TLoginForm.FormShow(Sender: TObject);var ini:TIniFile; name:string;begin //实现动态提取数据库的登录用户名 ...
- Python中语法糖及带参语法糖
在python中,@符号常被称作语法糖(装饰器),在某函数定义时,用以包装该函数,以达到截取,控制该函数的目的. def d(f): print('d...') k=f #此处保留了传进来的原函数 f ...
- python三大神器===》生成器
1. 认识生成器 利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成.但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一 ...
- java中vector、ArrayList、LinkedList的区别
转 首先看这两类都实现List接口,而List接口一共有三个实现类,分别是ArrayList.Vector和LinkedList.List用于存放多个元素,能够维护元素的次序,并且允许元素的重复.3个 ...