问题描述:

    输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现的字符串片段。回文的含义是:正着看和倒着看相同,如abba和yyxyy。

算法基本要点:

    首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。

  比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。

  下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";

  然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:

S     #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #
P 1 2 1 2 5 2 1 4 1 2 1 6 1 2 1 2 1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)

  

    下面计算P[i],该算法增加两个辅助变量id和mx

    其中id表示最大回文子串中心的位置

    mx则为id+P[id],也就是最大回文子串的边界。

    这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。

  具体代码如下:

if(mx > i)
{
p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
}
else
{
p[i] = 1;
}

  

  当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。

    当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。

  至于mx之后的部分是否对称,就只能一个一个匹配了。

    对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了

  下面给出原文,进一步解释算法为线性的原因

源代码:

#include <iostream>
#include <string>
#include <cstring> using namespace std; void findBMstr(string& str)
{
int *p = new int[str.size() + 1];
memset(p, 0, sizeof(p)); int mx = 0, id = 0;
for(int i = 1; i <= str.size(); i++)
{
if(mx > i)
{
p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
}
else
{
p[i] = 1;
} while(str[i - p[i]] == str[i + p[i]])
p[i]++; if(i + p[i] > mx)
{
mx = i + p[i];
id = i;
} }
int max = 0, ii;
for(int i = 1; i < str.size(); i++)
{
if(p[i] > max)
{
ii = i;
max = p[i];
}
} max--; int start = ii - max ;
int end = ii + max;
for(int i = start; i <= end; i++)
{
if(str[i] != '#')
{
cout << str[i];
}
}
cout << endl; delete p;
} int main()
{
string str = "12212321";
string str0;
str0 += "$#";
for(int i = 0; i < str.size(); i++)
{
str0 += str[i];
str0 += "#";
} cout << str0 << endl;
findBMstr(str0);
return 0;
}

  

Manacher算法[O(n)]的更多相关文章

  1. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  2. manacher算法专题

    一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...

  3. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  4. 1089 最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa ...

  5. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

  6. LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

    https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...

  7. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

  8. 【转】最长回文子串的O(n)的Manacher算法

    Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...

  9. Manacher算法

    Manacher算法是求回文串最高效的算法,能在线性时间内求出以每一个字符为中心的最长回文串.   首先,我们都能想出$O(N^2)$求出每一个字符为中心的最长回文串的算法.那么我们考虑这样一种情况. ...

  10. 字符串匹配--manacher算法模板

    manacher算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍长度的新串,在每两个字符之间加入一个特定的特殊 ...

随机推荐

  1. Spring Boot 2 实战:如何自定义 Servlet Filter

    1.前言 有些时候我们需要在 Spring Boot Servlet Web 应用中声明一些自定义的 Servlet Filter 来处理一些逻辑.比如简单的权限系统.请求头过滤.防止 XSS 攻击等 ...

  2. word2vec词向量处理中文语料

    word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间 ...

  3. 模块学习--random

    1 随机一个0-1之间float >>> random.random() 0.82544262519395 >>> random.random() 0.114854 ...

  4. Java基础知识笔记第七章:内部类和异常类

    内部类 /* *Java支持在一个类中定义另一个类,这样的类称为内部类,而包含内部类的类称为内部类的外嵌类 */ 重要关系: /* *1.内部类的外嵌类在内部类中仍然有效,内部类的方法也可以外嵌类的方 ...

  5. 九 AOP的概述

    AOP : 面向切面编程,解决OOP(面向对象编程)开发遇到的问题,是oop的延伸和扩展 AOP的优点:不修改源码的情况下,对程序进行校验,日志记录,性能控制,事务控制 SpringAOP底层的实现原 ...

  6. 快速幂 & 矩阵快速幂

    目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...

  7. Linu计划任务/crontab命令

    周期性任务计划 相关程序包: cronie:主程序包,提供了crond守护进程及相关辅助工具 cronie-anacron:cronie的补充程序:用于监控cronie任务执行状况:如cronie中的 ...

  8. [运维] 如何在 Linux 上安装 Nginx 服务器(一)

    原因 因为小程序对素材的大小是由要求的, 所以为了简化小程序上的内存要求, 在Linux上安装nginx来作为静态资源服务器, 这篇为第一篇, 主要介绍怎么在Linux上安装nginx, 下一篇将会介 ...

  9. 「CF1004E」Sonya and Ice Cream

    题目描述 给定一个 \(N\) 个点的树,要选出一条所含点的个数不超过 \(K\) 的一条路径,使得路径外的点到这条路径的距离的最大值最小. 数据范围:\(1\le K \le N \le 10^5\ ...

  10. Django 学习 之路由层(URL)

    路由层(URL) 1.路由层简单配置 (1)path方法 写固定的url. (2)re_path方法 可以正则规则 例: urlpatterns = [ path('admin/', admin.si ...