HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5428 Accepted Submission(s): 1902

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题意:
给你平面上若干的点,每个点有个权值$a_i$,现在用这些点构成一棵树。存在一种操作,可以使得这棵树上的某条边的长度变为0,令这条边连接的两个点分别是$i,j$,这棵树的边权和为$B$,问你$(a_i+a_j)/B$的最小值。
题解:
看网上的做法都是求次小生成树,而我却不是这样做的。
首先使用Kruskal求出最小生成树,而后枚举两个点,将这两个点之间连接那条边,这样就构成了一个换,为了保持树的形态,必须删掉这两个点的唯一路径上最长的边。
找到这条边的方法是通过倍增来求解。
令$ancestor[u][i]$为节点$u$向上走$2^i$所能到达的节点,$maxEdge[u][i]$表示节点$u$向上走$2^i$所能碰到的最长的边,那么有以下转移:
$$ancestor[u][i]=ancestor[ancestor[u][i-1]][i-1]$$
$$maxEdge[u][i]=max(maxEdge[u][i-1],maxEdge[ancestor[u][i-1]][i-1])$$
预处理出这两个数组后,就能用类似LCA的思想求最长边了。
代码:
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#define MAX_N 1234
#define MAX_D 25
using namespace std; int father[MAX_N];
int n; int popu[MAX_N]; struct edge {
int to;
double cost; edge(int t, double c) : to(t), cost(c) { } edge() { }
}; struct road {
int from, to;
double cost; road(int f, int t, double c) : from(f), to(t), cost(c) { } road() { }
}; bool cmp(road a,road b) {
if (a.cost == b.cost)
return popu[a.from] + popu[a.to] > popu[b.from] + popu[b.to];
return a.cost < b.cost;
} road ro[MAX_N*MAX_N];
int tot=;
vector<edge> G[MAX_N];
double B; int depth[MAX_N];
int ancestor[MAX_N][];
double maxEdge[MAX_N][]; struct Point {
double x, y; Point(double xx, double yy) : x(xx), y(yy) { } Point() { } double dis(Point a) {
return sqrt((x - a.x) * (x - a.x) + (y - a.y) * (y - a.y));
}
}; Point po[MAX_N]; void init() {
for (int i = ; i <= n; i++)
father[i] = i;
for (int i = ; i <= n; i++)G[i].clear();
tot = ;
B = ;
memset(depth, , sizeof(depth));
memset(ancestor, , sizeof(ancestor));
memset(maxEdge, , sizeof(maxEdge));
} int Find(int x){
if(x==father[x])return x;
return father[x]=Find(father[x]);
} void unionSet(int x,int y) {
int u = Find(x), v = Find(y);
if (u == v)return;
father[u] = v;
} bool Same(int x,int y){
return Find(x)==Find(y);
} void Kruskal() {
sort(ro + , ro + tot + , cmp);
for (int i = ; i <= tot; i++) {
int u = ro[i].from, v = ro[i].to;
if (Same(u, v))continue;
unionSet(u, v);
G[u].push_back(edge(v,ro[i].cost));
G[v].push_back(edge(u,ro[i].cost));
B += ro[i].cost;
}
} void dfs(int u,int p) {
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
double c = G[u][i].cost;
if (v == p)continue;
depth[v] = depth[u] + ;
ancestor[v][] = u;
maxEdge[v][] = c;
dfs(v, u);
}
} void getAncestor() {
for (int j = ; j < MAX_D; j++) {
for (int i = ; i <= n; i++) {
ancestor[i][j] = ancestor[ancestor[i][j - ]][j - ];
maxEdge[i][j] = max(maxEdge[i][j - ], maxEdge[ancestor[i][j - ]][j - ]);
}
}
} double LCA(int u,int v) {
double res = -;
if (depth[u] < depth[v])swap(u, v);
for (int i = MAX_D - ; i >= ; i--) {
if (depth[ancestor[u][i]] >= depth[v]) {
res = max(res, maxEdge[u][i]);
u = ancestor[u][i];
if (depth[u] == depth[v])break;
}
}
if (u == v)return res;
for (int i = MAX_D - ; i >= ; i--) {
if (ancestor[u][i] != ancestor[v][i]) {
res = max(res, max(maxEdge[u][i], maxEdge[v][i]));
u = ancestor[u][i];
v = ancestor[v][i];
}
}
return max(res, max(maxEdge[u][], maxEdge[v][]));
} int T; int main() {
cin.sync_with_stdio(false);
cin >> T;
while (T--) {
cin >> n;
init();
for (int i = ; i <= n; i++)
cin >> po[i].x >> po[i].y >> popu[i];
for (int i = ; i <= n; i++)
for (int j = i + ; j <= n; j++)
ro[++tot] = road(i, j, po[i].dis(po[j]));
Kruskal();
depth[] = ;
dfs(, );
getAncestor();
double ans = -;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
ans = max(ans, (popu[i] + popu[j]) / (B - LCA(i, j)));
cout << setprecision() << fixed << ans << endl;
}
return ;
}
PS:第一次写手写倍增,居然一发就AC了
HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 最小生成树
分析:http://www.cnblogs.com/wally/archive/2013/02/04/2892194.html 这个题就是多一个限制,就是求包含每条边的最小生成树,这个求出原始最小生成 ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
随机推荐
- python数据类型之集合(set)和其常用方法
集合是一个无序的,不重复的数据组合 作用(集合的重点):1.去重,把一个列表变成集合就自动去重了2.关系测试,测试两组数据库之前的交集.差集.并集等关系 s = {1, 1, 2, 2, 3, 4, ...
- Python动态属性和特性(一)
在Python中,数据的属性和处理数据的方法统称为属性.其实,方式只是可调用的属性.除了这二者之外,我们还可以创建特性(property),在不改变类接口的前提下,使用存取方法(即读取值和设置值方法) ...
- 解决获取View的width和Height为0的4种方法
很经常当我们动态创建某些View时,需要通过获取他们的width和height来确定别的view的布局,但是在onCreate()获取view的width和height会得到0.view.getWid ...
- 《变革之心》读后感——《Scrum实战》第2次课作业
刚读了几篇序言.导言和第一个故事,因此读后感可能不全面,先写一下一点儿感受吧. <变革之心>讲的是组织变革,而组织变革是以个人变革为基础的,本书的观点就是在个人变革上,“目睹--感受--变 ...
- Leetcode 464.我能赢吗
我能赢吗 在 "100 game" 这个游戏中,两名玩家轮流选择从 1 到 10 的任意整数,累计整数和,先使得累计整数和达到 100 的玩家,即为胜者. 如果我们将游戏规则改为 ...
- java作业 4
public class dog { /** * @param args */ public static void main(String[] args) { // TODO Auto-gen ...
- poj3255 Roadblocks 次短路
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10098 Accepted: 3620 Descr ...
- 九度oj 题目1171:C翻转
题目描述: 首先输入一个5 * 5的数组,然后输入一行,这一行有四个数,前两个代表操作类型,后两个数x y代表需操作数据为以x y为左上角的那几个数据. 操作类型有四种: 1 2 表示:90度,顺时 ...
- No entity found for query异常
错误为getSingleResult();获取值时获取不到报异常. getSingleResult的源码有一句: @throws EntityNotFoundException if there is ...
- Java中接口的作用
转载于:https://www.zhihu.com/question/20111251 困惑:例如我定义了一个接口,但是我在继承这个接口的类中还要写接口的实现方法,那我不如直接就在这个类中写实现方法岂 ...