原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081

Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5428    Accepted Submission(s): 1902

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 
Recommend
lcy

题意:

给你平面上若干的点,每个点有个权值$a_i$,现在用这些点构成一棵树。存在一种操作,可以使得这棵树上的某条边的长度变为0,令这条边连接的两个点分别是$i,j$,这棵树的边权和为$B$,问你$(a_i+a_j)/B$的最小值。

题解:

看网上的做法都是求次小生成树,而我却不是这样做的。

首先使用Kruskal求出最小生成树,而后枚举两个点,将这两个点之间连接那条边,这样就构成了一个换,为了保持树的形态,必须删掉这两个点的唯一路径上最长的边。

找到这条边的方法是通过倍增来求解。

令$ancestor[u][i]$为节点$u$向上走$2^i$所能到达的节点,$maxEdge[u][i]$表示节点$u$向上走$2^i$所能碰到的最长的边,那么有以下转移:

$$ancestor[u][i]=ancestor[ancestor[u][i-1]][i-1]$$

$$maxEdge[u][i]=max(maxEdge[u][i-1],maxEdge[ancestor[u][i-1]][i-1])$$

预处理出这两个数组后,就能用类似LCA的思想求最长边了。

代码:

#include<iostream>
#include<cstring>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#define MAX_N 1234
#define MAX_D 25
using namespace std; int father[MAX_N];
int n; int popu[MAX_N]; struct edge {
int to;
double cost; edge(int t, double c) : to(t), cost(c) { } edge() { }
}; struct road {
int from, to;
double cost; road(int f, int t, double c) : from(f), to(t), cost(c) { } road() { }
}; bool cmp(road a,road b) {
if (a.cost == b.cost)
return popu[a.from] + popu[a.to] > popu[b.from] + popu[b.to];
return a.cost < b.cost;
} road ro[MAX_N*MAX_N];
int tot=;
vector<edge> G[MAX_N];
double B; int depth[MAX_N];
int ancestor[MAX_N][];
double maxEdge[MAX_N][]; struct Point {
double x, y; Point(double xx, double yy) : x(xx), y(yy) { } Point() { } double dis(Point a) {
return sqrt((x - a.x) * (x - a.x) + (y - a.y) * (y - a.y));
}
}; Point po[MAX_N]; void init() {
for (int i = ; i <= n; i++)
father[i] = i;
for (int i = ; i <= n; i++)G[i].clear();
tot = ;
B = ;
memset(depth, , sizeof(depth));
memset(ancestor, , sizeof(ancestor));
memset(maxEdge, , sizeof(maxEdge));
} int Find(int x){
if(x==father[x])return x;
return father[x]=Find(father[x]);
} void unionSet(int x,int y) {
int u = Find(x), v = Find(y);
if (u == v)return;
father[u] = v;
} bool Same(int x,int y){
return Find(x)==Find(y);
} void Kruskal() {
sort(ro + , ro + tot + , cmp);
for (int i = ; i <= tot; i++) {
int u = ro[i].from, v = ro[i].to;
if (Same(u, v))continue;
unionSet(u, v);
G[u].push_back(edge(v,ro[i].cost));
G[v].push_back(edge(u,ro[i].cost));
B += ro[i].cost;
}
} void dfs(int u,int p) {
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
double c = G[u][i].cost;
if (v == p)continue;
depth[v] = depth[u] + ;
ancestor[v][] = u;
maxEdge[v][] = c;
dfs(v, u);
}
} void getAncestor() {
for (int j = ; j < MAX_D; j++) {
for (int i = ; i <= n; i++) {
ancestor[i][j] = ancestor[ancestor[i][j - ]][j - ];
maxEdge[i][j] = max(maxEdge[i][j - ], maxEdge[ancestor[i][j - ]][j - ]);
}
}
} double LCA(int u,int v) {
double res = -;
if (depth[u] < depth[v])swap(u, v);
for (int i = MAX_D - ; i >= ; i--) {
if (depth[ancestor[u][i]] >= depth[v]) {
res = max(res, maxEdge[u][i]);
u = ancestor[u][i];
if (depth[u] == depth[v])break;
}
}
if (u == v)return res;
for (int i = MAX_D - ; i >= ; i--) {
if (ancestor[u][i] != ancestor[v][i]) {
res = max(res, max(maxEdge[u][i], maxEdge[v][i]));
u = ancestor[u][i];
v = ancestor[v][i];
}
}
return max(res, max(maxEdge[u][], maxEdge[v][]));
} int T; int main() {
cin.sync_with_stdio(false);
cin >> T;
while (T--) {
cin >> n;
init();
for (int i = ; i <= n; i++)
cin >> po[i].x >> po[i].y >> popu[i];
for (int i = ; i <= n; i++)
for (int j = i + ; j <= n; j++)
ro[++tot] = road(i, j, po[i].dis(po[j]));
Kruskal();
depth[] = ;
dfs(, );
getAncestor();
double ans = -;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
ans = max(ans, (popu[i] + popu[j]) / (B - LCA(i, j)));
cout << setprecision() << fixed << ans << endl;
}
return ;
}

PS:第一次写手写倍增,居然一发就AC了

HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 最小生成树

    分析:http://www.cnblogs.com/wally/archive/2013/02/04/2892194.html 这个题就是多一个限制,就是求包含每条边的最小生成树,这个求出原始最小生成 ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  5. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  7. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

  8. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  9. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

随机推荐

  1. Python基础-函数参数

    Python基础-函数参数 写在前面 如非特别说明,下文均基于Python3 摘要 本文详细介绍了函数的各种形参类型,包括位置参数,默认参数值,关键字参数,任意参数列表,强制关键字参数:也介绍了调用函 ...

  2. leetcode-17-BST

    530. Minimum Absolute Difference in BST Given a binary search tree with non-negative values, find th ...

  3. Linux学习-SRPM 的使用 : rpmbuild (Optional)

    新版的 rpm 已经 将 RPM 与 SRPM 的指令分开了,SRPM 使用的是 rpmbuild 这个指令,而不是 rpm 喔! 利用默认值安装 SRPM 文件 (--rebuid/--recomp ...

  4. mysql中的存储引擎

    MySQL中常用的几种存储引擎:innoDB.bdb.myisam.memory以及这几个引擎的讲解: InnoDB存储引擎: (1) innodb存储引擎该mysql表提供了事务,回滚以及系统崩溃修 ...

  5. luogu2394 yyy loves Chemistry I

    练习 #include <iostream> #include <cstdio> using namespace std; long double a; int main(){ ...

  6. java内存模型学习

    根据 JVM 规范,JVM 内存共分为虚拟机栈.堆.方法区.程序计数器.本地方法栈五个部分. 虚拟机的内存模型分为两部分:一部分是线程共享的,包括 Java 堆和方法区:另一部分是线程私有的,包括虚拟 ...

  7. Python学习笔记——jupyter notebook 入门和中文pdf输出方案

    简单粗暴的安装 对于懒人而言,我还是喜欢直接安装python的集成开发环境 anaconda 多个内核控制 jupyter官网 1). 同时支持python2 和python 3 conda crea ...

  8. C++程序在Windows平台上各种定位内存泄漏的方法,并对比了它们的优缺点

    一.前言 在Linux平台上有valgrind可以非常方便的帮助我们定位内存泄漏,因为Linux在开发领域的使用场景大多是跑服务器,再加上它的开源属性,相对而言,处理问题容易形成“统一”的标准.而在W ...

  9. ICCID

     ICCID:Integrate circuit card identity 集成电路卡识别码(固化在手机SIM卡中) ICCID为IC卡的唯一识别号码,共有20位数字+英文组成,其编码格式为:XXX ...

  10. iOS学习笔记35-社交分享

    一.社交分享 现在很多应用都内置“社交分享”功能,可以将看到的新闻.博客.广告等内容分享到微博.微信.QQ.人人网等,其实从iOS6.0开始苹果官方就内置了Social.framework专门来实现社 ...