题目大意

已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足:

对于任意的\(j\), \(a_j \leq a_i + p - \sqrt{\vert{i-j}\vert{}}\)

题解

我们化简不等式+分类讨论可以得到:

\[f_i = max{\sqrt{i-j} + a_j} - a_i, \text{$j < i$}
\]

\[f_i = max{\sqrt{j-i} + a_j} - a_i, \text{$j > i$}
\]

我们可以正反都dp一遍,这样就剩下了一个式子:

\(f_i = max{\sqrt{i-j} + a_j} - a_i\)

我们发现,max中的式子是具有单调性的,什么单调性呢...

我们知道对于每个位置\(i\)都会选取一个最优决策点\(j\),

我们称\(j\)对\(i\)做出了贡献,那么我们知道:

对于任意的一个点\(i\)一定会对一段区间连续地做出贡献.

并且下标和区间所对应的位置都是单调的.

我们可以采用一种二分式的单调队列来处理这个问题

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 500010;
double f[maxn],g[maxn];
int a[maxn];
inline double calc(int j,int i){
return a[j] + sqrt(double(i-j));
}
struct Node{
int p,l,r;
Node(){}
Node(int a,int b,int c){p=a;l=b;r=c;}
}q[maxn];
int l,r,n;
inline void dp(double *f){
l = 0;r = -1;
f[1] = .0;
q[++r] = Node(1,2,n);
for(int i=2;i<=n;++i){
++q[l].l;
while(i > q[l].r) ++l;
f[i] = calc(q[l].p,i) - a[i];
if(calc(q[r].p,n) > calc(i,n)) continue;
while(l <= r && calc(q[r].p,q[r].l) < calc(i,q[r].l)) --r;
if(l <= r){
int ls = q[r].l,rs = q[r].r;
int x = -1;
while(ls <= rs){
int mid = (ls+rs) >> 1;
if(calc(i,mid) >= calc(q[r].p,mid)) x = mid,rs = mid-1;
else ls = mid+1;
}
q[r].r = x - 1;
q[++r] = Node(i,x,n);
}else q[++r] = Node(i,i+1,n);
}
}
int main(){
read(n);
for(int i=1;i<=n;++i) read(a[i]);
dp(f);reverse(a+1,a+n+1);
dp(g);reverse(g+1,g+n+1);
for(int i=1;i<=n;++i){
printf("%d\n",(int)ceil(max(0.0,max(f[i],g[i]))));
}
getchar();getchar();
return 0;
}

bzoj 2216: Lightning Conductor 单调队列优化dp的更多相关文章

  1. BZOJ 1233 干草堆 (单调队列优化DP)

    $ BZOJ~1233~~ $ 干草堆: (题目特殊性质) $ solution: $ 很妙的一道题目,开始看了一眼觉得是个傻逼贪心,从后往前当前层能多短就多短,尽量节省花费.但是这是DP专题,怎么会 ...

  2. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  3. BZOJ 2806: [Ctsc2012]Cheat(单调队列优化dp+后缀自动机)

    传送门 解题思路 肯定先要建出来广义后缀自动机.刚开始以为是个二分+贪心,写了一下结果\(20\)分.说一下正解,首先显然\(L_0\)具有单调性,是可以二分的.考虑二分后怎样判合法,对于分割序列很容 ...

  4. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  5. bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...

  6. 单调队列优化DP || [NOI2005]瑰丽华尔兹 || BZOJ 1499 || Luogu P2254

    题外话:题目极好,做题体验极差 题面:[NOI2005]瑰丽华尔兹 题解: F[t][i][j]表示第t时刻钢琴位于(i,j)时的最大路程F[t][i][j]=max(F[t-1][i][j],F[t ...

  7. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  8. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

  9. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

随机推荐

  1. vs2010+qt4编译出现error LNK2001: 无法解析的外部符号 "public: virtual struct QMetaObject等错误

    1.当vs2010编译qt时会出现以下错误: 1>------ 已启动全部重新生成: 项目: MyDialog, 配置: Debug Win32 ------            1>生 ...

  2. GIT简单使用——私人库篇

    1.生成公钥公钥是远程库识别您的用户身份的一种认证方式,通过公钥,您可以将本地git项目与远程库建立联系,然后您就可以很方便的将本地代码上传到远程库,或者将远程库代码下载到本地了.$ ssh-keyg ...

  3. java 表示当前时间的第二天的几点

    Calendar cal = Calendar.getInstance();  cal.setTime(new Date());  cal.add(Calendar.DAY_OF_YEAR, 1);  ...

  4. PowerBuilder -- 键盘对应的枚举值

    KeyCode values for keyboard keys Type of key KeyCode values and descriptions Mouse buttons KeyLeftBu ...

  5. 将到来的战略转变:移动 Web 还是移动 Apps?

    目前来看,移动应用比移动网站的易用性更高,但变化即将发生,移动网站最终将优于Apps,成为更好的策略选择. 一家公司制定移动策略时,最重要的问题是:是否需要考虑为移动设备特别做点什么.一些公司永远都不 ...

  6. NUTCH2.3 hadoop2.7.1 hbase1.0.1.1 solr5.2.1部署(二)

     Precondition: hadoop 2.7.1 hbase 1.0.1.1 / hbase 0.98.13 192.168.1.106 ->master 192.168.1.105 ...

  7. 新装上线 年度精品 XP,32/64位Win7,32/64位Win10系统【电脑城版】

    随着Windows 10Build 10074 Insider Preview版发布,有理由相信,Win10离最终RTM阶段已经不远了.看来稍早前传闻的合作伙伴透露微软将在7月底正式发布Win10的消 ...

  8. Docker基础原理

    前言 Docker是一个开源的软件项目,让用户程序部署在一个相对隔离的环境运行,借此在Linux操作系统上提供一层额外的抽象,以及操作系统层虚拟化的自动管理机制.需要额外指出的是,Docker并不等于 ...

  9. SQL中的四种连接方式

    转自:http://www.cnblogs.com/afirefly/archive/2010/10/08/1845906.html 联接条件可在FROM或WHERE子句中指定,建议在FROM子句中指 ...

  10. samba服务器的搭建和配置

    案例: 公司有两个部门, sales / market . 分别有成员 jack / tom 和 zhang / shen . 公司需求是这样的, 本部门资料禁止其他部门访问, 本部门成员之间不能干扰 ...