PTA 数据结构——是否完全二叉搜索树
7-2 是否完全二叉搜索树 (30 分)
将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。
输入格式:
输入第一行给出一个不超过20的正整数N;第二行给出N个互不相同的正整数,其间以空格分隔。
输出格式:
将输入的N个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES,如果该树是完全二叉树;否则输出NO。
输入样例1:
9
38 45 42 24 58 30 67 12 51
输出样例1:
38 45 24 58 42 30 12 67 51
YES
输入样例2:
8
38 24 12 45 58 67 42 51
输出样例2:
38 45 24 58 42 12 67 51
NO
思路:根据完全二叉树的下标性质,我们可以用数组模拟,这样可以大大减少代码量,也很易于理解
AC代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <cstdio>
#include <malloc.h> #define INF 0x3f3f3f3f
#define FRER() freopen("in.txt", "r", stdin)
#define FREW() freopen("out.txt", "w", stdout) using namespace std; const int maxn = + ; int n, m, num[maxn]; void insert(int idx) {
if(!num[idx]) {
num[idx] = m;
return ;
}
if(m > num[idx]) insert(idx * );
else insert(idx * + );
} int main()
{
cin >> n;
for(int i = ; i < n; ++i) {
cin >> m;
insert();
}
bool ok = true;
int cnt = ;
for(int i = ; ; ++i) {
if(num[i]) {
cout << num[i];
++cnt;
if(cnt < n) cout << " ";
else { cout << endl; break; }
}
else ok = false;
}
if(ok) cout << "YES" << endl;
else cout << "NO" << endl;
return ;
}
PTA 数据结构——是否完全二叉搜索树的更多相关文章
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...
- PTA 7-1 是否完全二叉搜索树 (30分)
PTA 7-1 是否完全二叉搜索树 (30分) 将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果. ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...
- javascript数据结构——写一个二叉搜索树
二叉搜索树就是左侧子节点值比根节点值小,右侧子节点值比根节点值大的二叉树. 照着书敲了一遍. function BinarySearchTree(){ var Node = function(key) ...
- [数据结构]P2.1 二叉搜索树
二叉树就是每个节点最多有两个分叉的树.这里我们写一写一个典型的例子二叉搜索树,它存在的实际意义是什么呢? 在P1.1链表中,我们清楚了链表的优势是善于删除添加节点,但是其取值很慢:数组的优势是善于取值 ...
- PTA 7-2 是否完全二叉搜索树(30 分) 二叉树
将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果. 输入格式: 输入第一行给出一个不超过20的正整数 ...
- PTA L2-004 这是二叉搜索树吗?-判断是否是对一棵二叉搜索树或其镜像进行前序遍历的结果 团体程序设计天梯赛-练习集
L2-004 这是二叉搜索树吗? (25 分) 一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点, 其左子树中所有结点的键值小于该结点的键值: 其右子树中所有结点的键值大于等于该结 ...
- PTA 是否同一棵二叉搜索树(25 分)
是否同一棵二叉搜索树(25 分) 给定一个插入序列就可以唯一确定一棵二叉搜索树.然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到.例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始 ...
- [PTA] 数据结构与算法题目集 6-12 二叉搜索树的操作集
唯一比较需要思考的删除操作: 被删除节点有三种情况: 1.叶节点,直接删除 2.只有一个子节点,将子节点替换为该节点,删除该节点. 3.有两个子节点,从右分支中找到最小节点,将其值赋给被删除节点的位置 ...
随机推荐
- collectd 与 logstash配置
节点 node1: 配置logstash node2: 配置collectd, collectd收集本地的信息, 通过配置将信息发送到node1节点 node1安装配置logstash rpm -iv ...
- PHPGGC学习----理论
本文首发于先知:https://xz.aliyun.com/t/5450 PHPGGC 是一款能够自动生成主流框架的序列化测试payload的工具,类似 Java 中的 ysoserial, 当前支持 ...
- SQLServer2008 开启远程连接
关闭防火墙 基本的设置可以参考下面的链接: http://wenku.baidu.com/link?url=qjZKZCCoa5T3EGd_rqSjl6Tuhb1wYjIHyXri630QxuAIKu ...
- 并发编程:synchronized 锁升级过程的验证
关于synchronized关键字以及偏向锁.轻量级锁.重量级锁的介绍广大网友已经给出了太多文章和例子,这里就不再重复了,也可点击链接来回顾一下.在这里来实战操作一把,验证JVM是怎么一步一步 ...
- Validation failed for one or more entities. See ‘EntityValidationErrors’,一个或多个验证错误 解决方法
try{// 写数据库}catch (DbEntityValidationException dbEx){ }在 dbEx 里面中我们就可以看到
- let和const命令整理
一.let命令 基本用法 ES6 新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效. for循环的计数器,就很合适使用let命令. for循环还 ...
- mysql数据库字段类型的选择原则
原文链接:http://blog.csdn.net/u013412790/article/details/51615407 数据库类型的选择对数据库的性能影响很大 1 . 数据类型会影响存储空间的开销 ...
- thymeleaf 模板语言简介
参考网址: https://blog.csdn.net/mlin_123/article/details/51816533 1.1 Thymeleaf 在有网络和无网络的环境下皆可运行,而且完全不需启 ...
- 【extjs6学习笔记】1.15 初始: 关于build
调试版本 sencha app build --development 发布版本 sencha app build 说明: 使用第三方库时,目前sencha可能还有bug,会更改第三方库内容,所以发布 ...
- shell中的判断语句
1.字符串判断 str1 = str2 当两个串有相同内容.长度时为真 str1 != str2 当串str1和str2不等时为真 -n str1 当串的长度大于0时为真(串非空,变量) -z str ...