【BZOJ3864】Hero meet devil DP套DP
【BZOJ3864】Hero meet devil
Description
Input
Output
Sample Input
GTC
10
Sample Output
22783
528340
497452
题意:给你一个串S,问所有长度为m的字符串中,与S串的最长公共子序列长度为1...|S|的串的个数。
题解:话说这种DP套DP的题最近有点流行~
还记得怎么求最长公共子序列吗?记得那个求最长公共子序列时的矩阵吗?不记得我就再说一遍。
令f[i][j]表示T串中到了第i个数,S串中到了第j个数,的LCS的长度。那么经典的DP方程:
$f[i][j]=max(f[i-1][j],f[i][j-1],(T[i]==S[j])?(f[i-1][j-1]+1):0)$
好了,但是我们求的是方案数,如果直接这样DP的话,需要记录的状态非常多(当前T可能的字符,之前T可能的字符。。。)。但是我们发现S的长度非常小,可以考虑把它单独拿出来处理一下。
因为每一行只能从上一行转移过来,我们不妨状压所有可能的行,暴力计算出在T中添加一个字符后会转移到哪个行。但是行中每一位的数不是0/1,差分一下就好了。处理出所有的转移后,再跑一个DP统计答案就行了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstring>
using namespace std;
const int mod=1000000007;
int n,m;
int to[1<<16][4],s[20],cnt[1<<16],f[2][1<<16],ans[20];
char str[20];
void init()
{
memset(to,0,sizeof(to));
memset(cnt,0,sizeof(cnt));
memset(f,0,sizeof(f));
memset(ans,0,sizeof(ans));
int i,j,k,s1,s2,t1,t2,tar;
for(i=0;i<(1<<n);i++)
{
if(i) cnt[i]=cnt[i-(i&-i)]+1;
for(j=0;j<4;j++)
{
for(tar=s1=s2=t1=t2=0,k=0;k<n;k++)
{
t1=s1,t2=s2,s2+=((i>>k)&1),s1=max(t1,s2);
if(s[k]==j) s1=max(s1,t2+1);
tar|=((s1-t1)<<k);
}
to[i][j]=tar;
}
}
}
void work()
{
scanf("%s%d",str,&m),n=strlen(str);
int i,j;
for(i=0;i<n;i++)
{
if(str[i]=='A') s[i]=0;
if(str[i]=='G') s[i]=1;
if(str[i]=='C') s[i]=2;
if(str[i]=='T') s[i]=3;
}
init();
f[0][0]=1;
for(j=0;j<=m;j++)
{
for(i=0;i<(1<<n);i++) f[(j&1)^1][i]=0;
for(i=0;i<(1<<n);i++) f[(j&1^1)][to[i][0]]=(f[j&1^1][to[i][0]]+f[j&1][i])%mod,f[(j&1^1)][to[i][1]]=(f[j&1^1][to[i][1]]+f[j&1][i])%mod,f[(j&1^1)][to[i][2]]=(f[j&1^1][to[i][2]]+f[j&1][i])%mod,f[(j&1^1)][to[i][3]]=(f[j&1^1][to[i][3]]+f[j&1][i])%mod;
}
for(i=0;i<(1<<n);i++) ans[cnt[i]]=(ans[cnt[i]]+f[m&1][i])%mod;
for(i=0;i<=n;i++) printf("%d\n",ans[i]);
}
int main()
{
int T;
scanf("%d",&T);
while(T--) work();
return 0;
}
【BZOJ3864】Hero meet devil DP套DP的更多相关文章
- BZOJ3864: Hero meet devil【dp of dp】
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- bzoj千题计划241:bzoj3864: Hero meet devil
http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...
- BZOJ3864: Hero meet devil(dp套dp)
Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 397 Solved: 206[Submit][Status][Discuss] Description ...
- HDU 4899 Hero meet devil (状压DP, DP预处理)
题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...
- BZOJ 3864 Hero meet devil (状压DP)
最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...
- bzoj3864: Hero meet devil
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
随机推荐
- Integer.ParseInt()异常
这里传参数:bookPage.nextPage,action接收到的是string型. 程序需要将string转成int来使用. 用上try { pageNUmber = Integer.parseI ...
- activity dialog生命周期
Android生命周期包括以下几个状态: onCreate(Bundle savedInstanceState):可以进行一些初始化的工作在activity第一次被创建的时候调用.这里是你做所有初始化 ...
- BZOJ 4197 NOI 2015 寿司晚宴
题面 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 ...
- iOS博客列表
国外 iOSDevWeekly NSHipster NSBlog objcio Raywenderlich Bignerdranch NSScreencast 需FQ Pilky.me jeremyw ...
- 【spring】spring的事务传播性 hibernate/jpa等的事务隔离性
spring的注解 @Trancational加在controller层,调用了service层的方法,service层的方法也加了@Trancational注解,这时候就出现了事务的嵌套,也就出现了 ...
- Can''t find the channel handler for deviceType 工行 个人网银 错误
背景描述:系统Win7,浏览器IE8.登录工商银行个人网银的时候,输入帐号密码和验证码后,出现空白页面,上面一句话 Can''t find the channel handler for devic ...
- GEOS 使用的例子
typedef Coordinate PT;geos::geom::Geometry* CGlbGlobePolygonSymbol::Interection(CGlbPolygon *geom, C ...
- 【重点突破】——Drag&Drop拖动与释放
一.引言 在学习HTML5新特性的时候,学到了Drag&Drop这两种拖放API,这里根据拖动的是“源对象”还是“目标对象”做两个小练习,主要是为了理解与应用HTML5为拖放行为提供的7个事件 ...
- spring boot 读取配置文件(application.yml)中的属性值
在spring boot中,简单几步,读取配置文件(application.yml)中各种不同类型的属性值: 1.引入依赖: <!-- 支持 @ConfigurationProperties 注 ...
- Win7无法启动,缺少系统文件ecache.sys怎么办
网上下载ecache.sys这个文件放到System32目录下即可 http://www.wenjian.net/file/ecache.sys.html