3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子
Time Limit: 30 Sec Memory Limit: 64 MB
Submit: 404 Solved: 249
[Submit][Status][Discuss]
Description
Input
第一行包含二个整数N,M
Output
一个浮点数,保留二位小数。表示答案,数据保证答案大于0
Sample Input
5 10
1 5 13 13 0 412
2 5 30 18 396 148
1 5 33 31 0 39
4 5 22 4 0 786
4 5 13 32 0 561
4 5 3 48 0 460
2 5 32 47 604 258
5 7 44 37 75 164
5 7 34 50 925 441
6 2 26 38 1000 22
Sample Output
103.00
HINT
1<=N<=5000
Source
很显然是分数规划,假设当前二分的答案为ans
那么X - Y >= k*ans 即 Y + k*ans <= X
首先,题目保证了ans > 0,那么不等式成立,当Y < X,也就是能构造出更优的解
然后这张图给人很明显的网络流即视感--尝试构图
一开始整张图是满流的,,我们能做的,是修改一些边的容量,但是又得保证最大流不变
假设扩充了一条边的容量,,那么相邻一定要有条边相应减少--这样找下去一定会出一个环
对于原图的每条边(x,y,a,b,c,d)
从x到y连一条权值为b + d的边,代表容量扩充的费用
从y到x连一条权值为a - d的边,代表容量缩小的费用,该边仅当c > 0时存在
假如图中存在一个负环,那么修改流量时沿着这个环绕一圈,答案一定更优
而且因为容量限制,这个环不能无限绕,,所以是合法的
那么二分答案,对应修改边权,最后用SPFA判断是否存在负环据说这个叫绕圈法??
——转自 CRZbulabula
//================================================


//sol1
#include<cstdio>
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=1e5+;
struct edge{int v,w,next;}e[N];int tot,head[N];
int n,m,S,q[N],cnt[N];
bool vis[N];
double dis[N];
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].w=z;e[tot].next=head[x];head[x]=tot;
}
inline bool spfa(double plusx){
for(int i=;i<=n;i++) vis[i]=,cnt[i]=,dis[i]=1e9;
unsigned short h=,t=;q[t]=S;dis[S]=;cnt[S]=;
while(h!=t){
int x=q[++h];vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(cnt[e[i].v]>n) return ;
double length=(double)e[i].w+plusx;
if(dis[e[i].v]>dis[x]+length){
dis[e[i].v]=dis[x]+length;
if(!vis[e[i].v]){
vis[e[i].v]=;
cnt[e[i].v]++;
q[++t]=e[i].v;
}
}
}
}
return ;
}
int main(){
double l=,r=,mid,ans;
n=read()+;m=read();S=n-;
for(int i=,a,b,c,d,u,v;i<=m;i++){
u=read();v=read();a=read();b=read();c=read();d=read();
add(u,v,b+d);
if(c) add(v,u,a-d);
if(a-d<) r+=(double)(d-a);
}
while(r-l>=1e-){
mid=(l+r)/2.00;
if(spfa(mid)) ans=mid,l=mid;
else r=mid;
}
printf("%.2lf",ans);
return ;
}
3597: [Scoi2014]方伯伯运椰子[分数规划]的更多相关文章
- [bzoj3597][scoi2014]方伯伯运椰子——分数规划,负环
题解 目标就是 \[Maximize\ \lambda = \frac{X-Y}{k}\] 按照分数规划的一般规律, 构造: \[g(\lambda) = \lambda k + Y - X\] 由于 ...
- 洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)
纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于 ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- bzoj 3597: [Scoi2014]方伯伯运椰子
Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...
- bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案
题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十 ...
- 2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)
传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h ...
随机推荐
- js中click重复执行
问题背景:在写一个非常简单添加方法的时候,用onclick事件调用添加方法,点击第一次没问题,第二次会重复执行,经过多次查找资料得知这个状况的解决方案,特意总结一下: 代码如下:点击#spec_for ...
- js 值类型和引用类型
function chainStore() { var store1='Nike China'; var store2=store1; store1='Nike U.S.A.'; alert(stor ...
- c# datetime是一年中的第几周
public static int WeekOfYear(DateTime dt, CultureInfo ci) { return ci.Calendar.GetWeekOfYear(dt, ci. ...
- Maven在[INFO] Generating project in Interactive mode卡住的问题解决
我的环境: Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; 2015-11-11T00:41:47+08:00) Maven ...
- 调整type="file"时的input的
<input type="file"> 在ie下的视图如下 而在firefox下的是 一般为了界面美化的效果,会将其设置为透明,然后覆盖一个<a href = & ...
- lampp、xampp安装文档
第一步:去官网 看这个介绍http://www.apachefriends.org/zh_cn/xampp-linux.html#1677 第二步:下载安装包 2.1 要区分Linux是32位还是64 ...
- oracle行锁select for update
oracle行锁select for update 学习了:https://blog.csdn.net/zdwzzu2006/article/details/50490157 学习了:https:// ...
- 2015年度新增开源软件排名TOP100
2015年度新增开源软件排名TOP100 本榜单包含2015年开源中国新收录的软件中,根据软件本身的关注度.活跃程度进行排名前100名的软件.从这份榜单中或许可以了解到最新业界的趋势. 1.Switc ...
- UISegmentedControl的具体使用
当用户输入不不过布尔值时.可使用分段控件(UISegmentedControl).分段控件提供一栏button(有时称为button栏),但只能激活当中一个button. 分段控件会导致用户在屏幕上看 ...
- TP5结合聚合数据API查询天气
php根据城市查询天气情况看到有人分享java的查询全国天气情况的代码,于是我想分享一个php版本的查询天气接口.免费查询天气的接口有很多,比如百度的apistore的天气api接口,我本来想采用这个 ...