uoj#290. 【ZJOI2017】仙人掌(数数+仙人掌+树形dp)
这图可以说是非常形象了2333
模拟赛的时候打了个表发现为一条链的时候答案是\(2^{n-2}\)竟然顺便过了第一个点
然后之后订正的时候强联通分量打错了调了一个上午
首先不难发现我们可以去掉所有在环上的边,那么就变成了一个森林,不同的树之间不可能有连边,那么只要所有树的答案乘起来就好了,只要在每一棵树内部树形\(dp\)即可
考虑对于\(u\),它的子树如何统计答案
我们强制子树必须得向外连一条边(显然最多只有一条),然后往上统计
如果子树里没有向外连边,每一棵子树的答案乘起来
如果向外连边的话,那么要把子树内的边两两匹配上。设\(g_i\)为\(i\)个点互相两两匹配的方案数,那么递推式为$$g_i=g_{i-1}+(i-1)\times g_{i-2}$$
边界条件为\(g_0=g_1=1\)
上面的意思是,如果第\(i\)个不连边,那么方案数就是\(g_{i-1}\),如果连边,那么有\(i-1\)种连法,连完后这两个点都不能再连边了
那么要把子树内的边两两匹配,如果当前节点是根,那么就是子树内向外连的每条链互相匹配,记\(tot\)为当前节点儿子个数,那么就是\(g_{tot}\),否则链还可以继续往上连,那么是\(g_{tot+1}\),可以考虑为把当前节点也加入匹配的队列,如果有链和它连上就代表这条链要继续向外连
然后记得开始的时候判一下是不是仙人掌就好了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
inline void swap(R int &x,R int &y){x^=y^=x^=y;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
void write(int x){if(x>9)write(x/10);putchar(x%10+48);}
void writeln(R int x){write(x);putchar('\n');}
const int N=1e6+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct eg{int v,nx,w;}e[N<<1];int head[N],tot=1;
inline void add_edge(R int u,R int v){e[++tot]={v,head[u]},head[u]=tot;}
int dfn[N],col[N],vis[N],f[N],g[N],st[N],low[N];
int n,m,cnt,top,tim,u,v,ans;bool qwq;
inline void clr(){fp(i,1,n)dfn[i]=col[i]=f[i]=vis[i]=head[i]=0;tim=cnt=top=qwq=0,tot=ans=1;}
void tarjan(int u,int fa){
bool flag=0;st[++top]=u;
dfn[u]=low[u]=++tim;
go(u)if(v!=fa){
if(!dfn[v]){
tarjan(v,u);cmin(low[u],low[v]);
if(low[v]<dfn[u]){
if(flag)return qwq=1,void();
flag=1;
}
}else{
cmin(low[u],dfn[v]);
if(low[v]<dfn[u]){
if(flag)return qwq=1,void();
flag=1;
}
}
}
if(low[u]==dfn[u])do{col[st[top--]]=u;}while(st[top+1]!=u);
}
void dp(int u,int fa){
vis[u]=f[u]=1;int tot=0;
go(u)if(v!=fa&&!e[i].w){
dp(v,u),++tot;
f[u]=mul(f[u],f[v]);
}
if(tot)f[u]=mul(f[u],fa?g[tot+1]:g[tot]);
}
int main(){
// freopen("testdata.in","r",stdin);
g[0]=g[1]=1;fp(i,2,N-5)g[i]=add(g[i-1],mul(i-1,g[i-2]));
int T=read();
while(T--){
n=read(),m=read(),clr();
fp(i,1,m)u=read(),v=read(),add_edge(u,v),add_edge(v,u);
tarjan(1,0);
if(qwq){writeln(0);continue;}
fp(i,2,tot)e[i].w=(col[e[i].v]==col[e[i^1].v]);
fp(i,1,n)if(!vis[i])dp(i,0),ans=mul(ans,f[i]);
writeln(ans);
}return 0;
}
uoj#290. 【ZJOI2017】仙人掌(数数+仙人掌+树形dp)的更多相关文章
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- codeforces 456 D. A Lot of Games(字典数+博弈+思维+树形dp)
题目链接:http://codeforces.com/contest/456/problem/D 题意:给n个字符串.进行k次游戏.每局开始,字符串为空串,然后两人轮流在末尾追加字符,保证新的字符串为 ...
- Codeforces 1118 F2. Tree Cutting (Hard Version) 优先队列+树形dp
题目要求将树分为k个部分,并且每种颜色恰好在同一个部分内,问有多少种方案. 第一步显然我们需要知道哪些点一定是要在一个部分内的,也就是说要求每一个最小的将所有颜色i的点连通的子树. 这一步我们可以将所 ...
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...
- 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi表示把iii为根的子树加边形成仙人掌的方案数. ...
- bzoj 4784: [Zjoi2017]仙人掌【tarjan+树形dp】
其实挺简单的但是没想出来---- 首先判断无解情况,即,一开始的图就不是仙人掌,使用tarjan判断如果一个点dfs下去有超过一个点比他早,则说明存在非简单环. 然后考虑dp,显然原图中已经属于某个简 ...
- 【NOI P模拟赛】仙人掌(圆方树,树形DP)
题面 n n n 个点, m m m 条边. 1 ≤ n ≤ 1 0 5 , n − 1 ≤ m ≤ 2 × 1 0 5 1\leq n\leq 10^5,n-1\leq m\leq 2\times1 ...
- 树形DP(统计直径的条数 HDU3534)
分析:首先树形dp(dfs计算出每个点为根节点的子树的最长距离和次长距离),然后找出L=dis[u][0]+dis[u][1]最长的那个点u,然后在以u为根节点dfs,统计长度为L的条数:具体做法:把 ...
随机推荐
- 前端JSONPJIE解决跨域问题
解决同源策略的两个方法 1 . JSONP jsonp (将 JSON 数据填充进回调函数,这就是JSONP的JSON+Padding 的含义) jsonp是json用来跨域的一个东西,原理是通过sc ...
- 关于android R.java文件无法创建的问题
R.java文件无法创建的原因网上有很多说法普遍是以下两种: 1. xml文件有错误: 解决方法就是找到哪个xml有错然后把错误修复就OK了. 2.编码问题 这时候只要把xml文件的编码改成utf8就 ...
- JVM性能分析工具详解--MAT等
获得堆转储文件 巧妇难为无米之炊,我们首先需要获得一个堆转储文件.为了方便,本文采用的是 Sun JDK 6.通常来说,只要你设置了如下所示的 JVM 参数: -XX:+HeapDumpOnOutOf ...
- STM32 FSMC学习笔记+补充(LCD的FSMC配置)
STM32 FSMC学习笔记+补充(LCD的FSMC配置) STM32 FSMC学习笔记 STM32 FSMC的用法--LCD
- 现代JS中的流程控制:详解Callbacks 、Promises 、Async/Await
JavaScript经常声称是_异步_.那是什么意思?它如何影响发展?近年来这种方法有何变化? 请思考以下代码: result1 = doSomething1(); result2 = doSomet ...
- android自定义控件(一) 官方文档的翻译
构建自定义组件 Android中,你的应用程序程序与View类组件有着一种固定的联系,例如按钮(Button).文本框(TextView),可编辑文本框(EditText),列表框(ListView) ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- ACM学习历程——hihoCoder挑战赛10A 01串(策略)
时间限制:7000ms 单点时限:1000ms 内存限制:256MB 描述 给定两个整数n和m,求是否存在恰好包含n个0和m个1的01串S,使得S中不存在子串"001"和" ...
- bzoj 4278 Tasowanie 后缀数组+贪心
题目大意 给定两个数字串A和B,通过将A和B进行二路归并得到一个新的数字串T,请找到字典序最小的T.\(len \leq 200000\) 题解 我们从归并排序的角度去想,每次把两者之一较小的取出来 ...
- Xshell 主机和远程机之间的文件传输
(1)宿主机传输文件到远程机 方法1:直接拖动文件至xshell远程机命令行界面 方法2:远程机命令行输入rz打开文件选择框 (2)远程机传输文件到宿主机 远程机命令行界面上输入sz xxx.txt( ...