就是一步一步把大的往目标地放。

#include <iostream>
#include <cstdio>
using namespace std;
int fro[55], too[55], cnt, uu, n, ans=0;
void dfs(int x, int qu){
if(fro[x]==qu) return ;
for(int i=x-1; i>=1; i--)
dfs(i, 6-qu-fro[x]);//大的已经归位了,只有小的会阻碍。
printf("move %d from %c to %c\n", x, fro[x]+'A'-1, qu+'A'-1);
fro[x] = qu;
ans++;
}
int main(){
cin>>n;
for(int i=1; i<=3; i++){
scanf("%d", &cnt);
for(int j=1; j<=cnt; j++){
scanf("%d", &uu);
fro[uu] = i;
}
}
for(int i=1; i<=3; i++){
scanf("%d", &cnt);
for(int j=1; j<=cnt; j++){
scanf("%d", &uu);
too[uu] = i;
}
}
for(int i=n; i>=1; i--) dfs(i, too[i]);
cout<<ans<<endl;
return 0;
}

luogu1242 新汉诺塔的更多相关文章

  1. 洛谷P1242 新汉诺塔(dfs,模拟退火)

    洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...

  2. P1242 新汉诺塔(搜索+模拟退火)

    题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...

  3. 洛谷 P1242 新汉诺塔

    原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...

  4. 大白_uva10795_新汉诺塔

    题意:给出所有盘子的初态和终态,问最少多少步能从初态走到终态,其余规则和老汉诺塔一样. 思路: 若要把当前最大的盘子m从1移动到3,那么首先必须把剩下的所有盘子1~m-1放到2上,然后把m放到3上. ...

  5. UVA 10795 新汉诺塔问题

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. 洛谷P1242 新汉诺塔

    传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...

  7. 洛谷P1242 新汉诺塔 【神奇的递归】

    题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...

  8. P1242 新汉诺塔(hanio)

    这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...

  9. UVa新汉诺塔问题(A Different Task,Uva 10795)

    主要需要理递归函数计算 #define MAXN 60+10 #include<iostream> using namespace std; int n,k,S[MAXN],F[MAXN] ...

随机推荐

  1. String、String Buffer、String Builder

    对于String.String Buffer.String Builder:我一直都只知道String是字符串常量,后两者是字符串变量: String和String Buffer是线程安全的,Stri ...

  2. SpringBoot 数据库操作 增删改查

    1.pom添加依赖 <!--数据库相关配置--> <dependency> <groupId>org.springframework.boot</groupI ...

  3. session会话

    jsp会话篇session: package com.log; import java.io.IOException; import java.util.ArrayList; import java. ...

  4. 摘自 dd大牛的《背包九讲》

    P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...

  5. 2018.2.12 PHP 如何读取一亿行的大文件

    PHP 如何读取一亿行的大文件 我们可能在很多场景下需要用 PHP 读取大文件,之后进行处理,如果你没有相关的经验可以看下,希望能给你带来一些启发. 模拟场景 我们有一个 1亿 行,大小大概为 3G ...

  6. python之golbal/nonlocal

    一.关键字 golbal nonlocal 在局部修改全局的变量为什么会报错 count = 0 def func(): count += 1 func() # UnboundLocalError: ...

  7. session添加登录次数限制

    session 中设置了生存期,20分钟,输入密码错误次数保存到session 中,过一段时间自动解除: //登陆的用户名或者密码出错次数 int n = 0; if(logintimes == nu ...

  8. C语言输出多位小数

    #include<stdio.h>#include<stdlib.h>int main(){int i=0;int m=19;int n=3;int s=0;s=m/n;pri ...

  9. bzoj4666 小z的胡话

    题目描述: bz 题解: 乱搞好题哇. 众所周知斐波那契数列是有循环节的. 我们可以搞出在模$10^x$下与所给得数同余的集合,那么在模$10^{x+1}$下,同余集合一定是原集合及循环若干循环节的大 ...

  10. 【Git版本控制】GitLab Fork项目的工作流程

    转载自简书: GitLab Fork项目工作流程