官方题解

可以用求概率的思想来解决这个问题。令以i号节点为根的子树为第i棵子树,设这颗子树恰好有sz[i]个点。那么第i个点是第i棵子树最大值的概率为1/sz[i],不是最大值的概率为(sz[i]-1)/sz[i]。现在可以求解恰好有k个最大值的概率。

令dp[i][j]表示考虑编号从1到i的点,其中恰好有j个点是其子树最大值的概率。 很容易得到如下转移方程:dp[i][j]=dp[i-1][j]*(sz[i]-1)/sz[i]+dp[i-1][j-1]/sz[i]。这样dp[n][k]就是所有点中恰好有k个最大值的概率。

题目要求的是方案数,用总数n!乘上概率就是答案。计算的时候用逆元代替上面的分数即可

另外我补充一下边界情况:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; typedef long long LL; const int maxn = + ;
const LL MOD = ; LL fac[maxn], invfac[maxn], inv[maxn]; inline LL mul_mod(LL a, LL b) { return (a * b) % MOD; } LL pow_mod(LL a, LL n)
{
LL ans = , base = a;
while(n)
{
if(n & ) ans = mul_mod(ans, base);
base = mul_mod(base, base);
n >>= ;
}
return ans;
} LL inverse(LL a) { return pow_mod(a, MOD - ); } void preprocess()
{
fac[] = ;
for(int i = ; i < maxn; i++) { inv[i] = inverse(i); fac[i] = (fac[i - ] * i) % MOD; }
invfac[maxn - ] = inverse(fac[maxn - ]);
for(int i = maxn - ; i >= ; i--) invfac[i] = mul_mod(invfac[i+], (i+));
} vector<int> G[maxn]; int sz[maxn]; void dfs(int u, int fa)
{
sz[u] = ;
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa) continue;
dfs(v, u);
sz[u] += sz[v];
}
} LL d[maxn][maxn]; int main()
{
preprocess(); int T; scanf("%d", &T);
for(int kase = ; kase <= T; kase++)
{
int n, k; scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++) G[i].clear();
for(int u, v, i = ; i < n; i++)
{
scanf("%d%d", &u, &v);
G[u].push_back(v); G[v].push_back(u);
} dfs(, );
d[][] = mul_mod(sz[] - , inv[sz[]]);
d[][] = inv[sz[]];
for(int i = ; i <= n; i++)
{
d[i][] = mul_mod(mul_mod(d[i-][], sz[i] - ), inv[sz[i]]);
for(int j = ; j <= min(i, k); j++)
{
LL t1 = mul_mod(mul_mod(d[i-][j], sz[i] - ), inv[sz[i]]);
LL t2 = mul_mod(d[i-][j-], inv[sz[i]]);
d[i][j] = t1 + t2;
if(d[i][j] >= MOD) d[i][j] -= MOD;
}
} LL ans = mul_mod(d[n][k], fac[n]);
printf("Case #%d: %I64d\n", kase, ans);
} return ;
}

代码君

HDU 5378 树上的概率DP Leader in Tree Land的更多相关文章

  1. 2015 Multi-University Training Contest 7 hdu 5378 Leader in Tree Land

    Leader in Tree Land Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  2. [2015hdu多校联赛补题]hdu5378 Leader in Tree Land

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5378 题意:给你一棵n个结点的有根树.因为是有根树,那么每个结点可以指定以它为根的子树(后面讨论的子树 ...

  3. 2015多校第7场 HDU 5378 Leader in Tree Land 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5378 题意:一棵n个节点的树.对其节点进行标号(1~n).求恰好存在k个节点的标号是其节点所在子树的最 ...

  4. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  5. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  6. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  7. [概率dp] hdu 5378 Leader in Tree Land

    题意: 给你一颗以1位根节点的树.我们定义对于每一个子树,节点权值最大的权值记为这个子树的权值,为你将1~n放到这个树里 满足最大权值仅仅有k个的组合数是多少. 思路: 我们能够知道以每一个节点为子树 ...

  8. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  9. HDU 4576 Robot (概率DP)

    暴力DP求解太卡时间了...........写挫一点就跪了 //hdu robot #include <cstdio> #include <iostream> #include ...

随机推荐

  1. Jquery4

    w3s例子http://www.w3school.com.cn/jquery/event_keyup.asp Jquery插件 http://www.cnblogs.com/afuge/archive ...

  2. Css+Html

    CSS样式 <style type="text/css"> tt.tt1 { <style type="text/css"> p { b ...

  3. @vue/cli 3.x项目脚手架 webpack 配置

    @vue/cli  是一个基于 Vue.js 进行快速开发的完整系统. @vue/cli   基于node服务  需要8.9以上版本 可以使用 nvm等工具来控制node版本  构建于 webpack ...

  4. SpringMVC+Thymeleaf 简单使用

    一.简介 1.Thymeleaf 在有网络和无网络的环境下皆可运行,而且完全不需启动WEB应用,即它可以让美工在浏览器查看页面的静态效果,也可以让程序员在服务器查看带数据的动态页面效果.浏览器解释 h ...

  5. MFC制作简单通讯录程序

    学习c++和MFC一段时间了,苦于没有项目实战,所以自己写了一个简单的简单通讯录程序,以前用c#写简单很多,例程是这本书上的实例,我的第一个winform程序也是从这本书上学的,总结c#写的话更简单, ...

  6. HDU 4055 Number String(DP计数)

    题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...

  7. python爬虫之路——初识数据库存储

    非关系型数据库:MongoDB.关系型数据库:MySQL 关系型和非关系型的区别: 安装: 使用: 应用场景: mongoDB是一种非关系型数据库,分为四大类:键值存储数据库,列存储数据库,文档型数据 ...

  8. python基础教程总结12——数据库

    1. Python 数据库 API 很多支持SQL标准的数据库在Python中都有对应的客户端模块.为了在提供相同功能(基本相同)的不同模块之间进行切换(兼容),Python 规定了一个标准的 DB ...

  9. JAVA小基础

    JAVA的jsp程序中,jar如果不能再引用的时候加入到lib文件夹而选择外部引用,可能会导致jar不能被找到的问题. string.format的占位符一般使用%s表示字符串的意思,与C#的{0}这 ...

  10. Codeforces Round #320 (Div. 1) [Bayan Thanks-Round] B "Or" Game (贪心)

    首先应该保证二进制最高位尽量高,而位数最高的数乘x以后位数任然是最高的,所以一定一个数是连续k次乘x. 当出现多个最高位的相同的数就枚举一下,先预处理一下前缀后缀即可. #include<bit ...