_DataStructure_C_Impl:Floyd算法求有向网N的各顶点v和w之间的最短路径
#include<stdio.h>
#include<stdlib.h>
#include<string.h> typedef char VertexType[4];
typedef char InfoPtr;
typedef int VRType;
#define INFINITY 100000 //定义一个无限大的值
#define MaxSize 50 //最大顶点个数
typedef int PathMatrix[MaxSize][MaxSize][MaxSize]; //定义一个保存最短路径的二维数组
typedef int ShortPathLength[MaxSize][MaxSize]; //定义一个保存从顶点v0到顶点v的最短距离的数组
typedef enum{DG,DN,UG,UN}GraphKind;
typedef struct{
VRType adj; //对于无权图,用1表示相邻,0表示不相邻;对于带权图,存储权值
InfoPtr *info; //与弧或边的相关信息
}ArcNode,AdjMatrix[MaxSize][MaxSize];
//图的类型定义
typedef struct{
VertexType vex[MaxSize]; //用于存储顶点
AdjMatrix arc; //邻接矩阵,存储边或弧的信息
int vexnum,arcnum; //顶点数和边(弧)的数目
GraphKind kind; //图的类型
}MGraph;
//加入一个存储网的行、列和权值的类型定义
typedef struct{
int row;
int col;
int weight;
}GNode;
//採用邻接矩阵表示法创建有向网N
void CreateGraph(MGraph *N,GNode *value,int vnum,int arcnum,VertexType *ch){
int i,j,k,w;
char s[MaxSize];
VertexType v1,v2;
N->vexnum=vnum;
N->arcnum=arcnum;
for(i=0;i<vnum;i++)
strcpy(N->vex[i],ch[i]);
//初始化邻接矩阵
for(i=0;i<N->vexnum;i++)
for(j=0;j<N->vexnum;j++){
N->arc[i][j].adj=INFINITY;
N->arc[i][j].info=NULL; //弧的信息初始化为空
}
for(k=0;k<arcnum;k++){
i=value[k].row;
j=value[k].col;
N->arc[i][j].adj=value[k].weight;
}
N->kind=DN; //图的类型为有向网
}
//输出邻接矩阵存储表示的图N
void DisplayGraph(MGraph N){
int i,j;
printf("有向网具有%d个顶点%d条弧,顶点依次是: ",N.vexnum,N.arcnum);
for(i=0;i<N.vexnum;++i) /*输出网的顶点*/
printf("%s ",N.vex[i]);
printf("\n有向网N的:\n"); /*输出网N的弧*/
printf("序号i=");
for(i=0;i<N.vexnum;i++)
printf("%11d",i);
printf("\n");
for(i=0;i<N.vexnum;i++)
{
printf(" %-6d ",i);
for(j=0;j<N.vexnum;j++)
printf("%-11d",N.arc[i][j].adj);
printf("\n");
}
}
//用Floyd算法求有向网N的各顶点v和w之间的最短路径,当中path[v][w][u]表示u是从v到w当前求得最短路径上的顶点
void Floyd(MGraph N,PathMatrix path,ShortPathLength dist){
int u,v,w,i;
for(v=0;v<N.vexnum;v++) //初始化数组path和dist
for(w=0;w<N.vexnum;w++){
dist[v][w]=N.arc[v][w].adj; //初始时。顶点v到顶点w的最短路径为v到w的弧的权值
for(u=0;u<N.vexnum;u++)
path[v][w][u]=0; //路径矩阵初始化为零
if(dist[v][w]<INFINITY){ //假设v到w有路径,则由v到w的路径经过v和w两点
path[v][w][v]=1;
path[v][w][w]=1;
}
}
for(u=0;u<N.vexnum;u++)
for(v=0;v<N.vexnum;v++)
for(w=0;w<N.vexnum;w++)
if(dist[v][u]<INFINITY&&dist[u][w]<INFINITY&&(dist[v][u]+dist[u][w]<dist[v][w])){ //从v经u到w的一条路径为当前最短的路径
dist[v][w]=dist[v][u]+dist[u][w]; //更新v到w的最短路径
for(i=0;i<N.vexnum;i++) //从v到w的路径经过从v到u和从u到w的全部路径
path[v][w][i]=path[v][u][i]||path[u][w][i];
}
}
void main(){
int w,u,v,vnum=3,arcnum=4;
MGraph N;
GNode value[]={{0,1,5},{1,0,10},{1,2,6},{2,0,9}};
VertexType ch[]={"v0","v1","v2"};
PathMatrix path; /*用二维数组存放最短路径所经过的顶点*/
ShortPathLength dist; /*用一维数组存放最短路径长度*/
CreateGraph(&N,value,vnum,arcnum,ch); /*创建有向网N*/
for(v=0;v<N.vexnum;v++)
N.arc[v][v].adj=0; /*弗洛伊德算法要求对角元素值为0。由于两点同样,其距离为0 */
DisplayGraph(N); /*输出有向网N*/
Floyd(N,path,dist);
printf("顶点之间的最短路径长度矩阵dist:\n");
for(u=0;u<N.vexnum;u++)
{
for(v=0;v<N.vexnum;v++)
printf("%6d",dist[u][v]);
printf("\n");
}
for(u=0;u<N.vexnum;u++)
for(v=0;v<N.vexnum;v++)
if(u!=v)
printf("%s到%s的最短距离为%d\n",N.vex[u],N.vex[v],dist[u][v]);
printf("各顶点之间的最短路径所经过的顶点:\n");
for(u=0;u<N.vexnum;u++)
for(v=0;v<N.vexnum;v++)
if(u!=v)
{
printf("由%s到%s经过:",N.vex[u],N.vex[v]);
for(w=0;w<N.vexnum;w++)
if(path[u][v][w]==1)
printf("%s ",N.vex[w]);
printf("\n");
}
system("pause");
}
_DataStructure_C_Impl:Floyd算法求有向网N的各顶点v和w之间的最短路径的更多相关文章
- _DataStructure_C_Impl:Dijkstra算法求最短路径
// _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<strin ...
- 【POJ - 2139】Six Degrees of Cowvin Bacon (Floyd算法求最短路)
Six Degrees of Cowvin Bacon Descriptions 数学课上,WNJXYK忽然发现人缘也是可以被量化的,我们用一个人到其他所有人的平均距离来量化计算. 在这里定义人与人的 ...
- [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...
- Floyd 算法求多源最短路径
Floyd算法: Floyd算法用来找出每对顶点之间的最短距离,它对图的要求是,既可以是无向图也可以是有向图,边权可以为负,但是不能存在负环(可根据最小环的正负来判定). 基本算法: Floyd算法基 ...
- Poj 1125 Stockbroker Grapevine(Floyd算法求结点对的最短路径问题)
一.Description Stockbrokers are known to overreact to rumours. You have been contracted to develop a ...
- Floyd算法应用-医院选址问题
1)问题描述 n个村庄之间的交通图可以用有向网图来表示,图中边<vi, vj>上的权值表示从村庄i到村庄j的道路长度.现在要从这n个村庄中选择一个村庄新建一所医院,问这所医院应建在哪个村庄 ...
- C++编程练习(11)----“图的最短路径问题“(Dijkstra算法、Floyd算法)
1.Dijkstra算法 求一个顶点到其它所有顶点的最短路径,是一种按路径长度递增的次序产生最短路径的算法. 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的 ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
随机推荐
- 记忆泛型约束where
原文发布时间为:2011-03-29 -- 来源于本人的百度文章 [由搬家工具导入] http://msdn.microsoft.com/en-us/library/d5x73970.aspx
- 【asp.net】Win7旗舰版IIS配置
1.IIS配置流程 win7 iis 的配置不需要插入安装盘,可直接在控制面板中开启该功能,步骤如下: (1)"控制面板"-->"程序和功能"--> ...
- python print的参数介绍
参考print的官方文档 print(...) print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False) Prints th ...
- java使用DBCP连接池创建工具类
1.说明 java中有个扩展包 javax下面有个DataResource的接口 javax.sql.DataResource 该接口定义了连接池的方法规范 而DBCP框架有apache公司开发,他 ...
- libsm6 & libgtk lost (QQ + WPS: Ubuntu)
error while loading shared libraries: libgtk-x11-2.0.so.0: cannot openshared object file: No such fi ...
- AC日记——数据流中的算法 51nod 1785
数据流中的算法 思路: 线段树模拟: 时间刚刚卡在边界上,有时超时一个点,有时能过: 来,上代码: #include <cstdio> #include <cstring> # ...
- CCCC L1-002. 打印沙漏【图形打印】
L1-002. 打印沙漏 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 本题要求你写个程序把给定的符号打印成沙漏的形状.例如给 ...
- 注意这几点,轻轻松松配置 Nginx + Tomcat 的集群和负载均衡
Tomcat 集群是当单台服务器达到性能瓶颈,通过横向扩展的方式提高整体系统性能的有效手段.Nginx 是一个高性能的 HTTP 和反向代理 web 服务器,可以通过简单的配置实现 Tomcat 集群 ...
- Topcoder SRM 663 DIV 1
ABBADiv1 题意: 规定两种操作,一种是在字符串的末尾添加A,另一种是在末尾添加B然后反转字符串.现在给你一个起始串,一个终点串,然后问你是否能够通过以上两种操作,从起始串变为终点串. 题解: ...
- [HAOI2011]Problem b&&[POI2007]Zap
题目大意: $q(q\leq50000)$组询问,对于给定的$a,b,c,d(a,b,c,d\leq50000)$,求$\displaystyle\sum_{i=a}^b\sum_{j=c}^d[\g ...