Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法
题目链接:http://codeforces.com/problemset/problem/617/E
4 seconds
256 megabytes
standard input
standard output
Bob has a favorite number k and ai of
length n. Now he asks you to answer m queries.
Each query is given by a pair li and ri and
asks you to count the number of pairs of integers i and j,
such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is
equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) —
the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) —
Bob's array.
Then m lines follow. The i-th
line contains integers li and ri (1 ≤ li ≤ ri ≤ n) —
the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
5 3 1
1 1 1 1 1
1 5
2 4
1 3
9
4
4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:
给出一个序列,作m此查询,每次查询的内容为:在区间[l, r]内,有多少个子区间的异或和为k?
题解:
莫队算法:解决区间询问的离线方法,时间复杂度:O(n^1.5)。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e5+; int n, m, k, w, a[maxn];
LL sum, ans[maxn], c[];
//a[i]为前缀异或和,c[i]为在当前区间内,前缀异或和(从1开始)为i的个数。
//可知:a[l-1]^a[r] = val[l]^val[l+1]^………^val[r] struct node
{
int l, r, id;
bool operator<(const node &x)const{
if(l/w==x.l/w) return r<x.r;
return l/w<x.l/w;
}
}q[maxn]; void del(int i)
{
c[a[i]]--;
sum -= c[a[i]^k];
} void add(int i)
{
sum += c[a[i]^k];
c[a[i]]++;
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i = ; i<=n; i++)
{
scanf("%d",&a[i]);
a[i] ^= a[i-];
}
for(int i = ; i<=m; i++)
{
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id = i;
} w = sqrt(n);
sort(q+,q++m); int L = , R = ;
c[] = , sum = ;
for(int i = ; i<=m; i++)
{
while(L<q[i].l) del(L-), L++;
while(L>q[i].l) L--, add(L-);
while(R<q[i].r) R++, add(R);
while(R>q[i].r) del(R), R--;
ans[q[i].id] = sum;
} for(int i = ; i<=m; i++)
printf("%lld\n",ans[i]);
return ;
}
Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法的更多相关文章
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...
- Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子
#include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】
任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number (莫队)
题目链接:http://codeforces.com/contest/617/problem/E 题目大意:有n个数和m次查询,每次查询区间[l, r]问满足ai ^ ai+1 ^ ... ^ aj ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number
time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standa ...
- codeforces 617E E. XOR and Favorite Number(莫队算法)
题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- [Codeforces Round #340 (Div. 2)]
[Codeforces Round #340 (Div. 2)] vp了一场cf..(打不了深夜的场啊!!) A.Elephant 水题,直接贪心,能用5步走5步. B.Chocolate 乘法原理计 ...
随机推荐
- android-samples-mvp
Model–view–presenter (MVP)介绍 mvp在wiki上的介绍为 Model 定义用户界面所需要被显示的数据模型,一个模型包含着相关的业务逻辑 View View不应该处理业务 ...
- TreeSet, LinkedHashSet and HashSet 的区别
1. 介绍 TreeSet, LinkedHashSet and HashSet 在java中都是实现Set的数据结构 # TreeSet的主要功能用于排序 # LinkedHashSet的主要功能用 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- MySQL中数据类型(char(n)、varchar(n)、nchar(n)、nvarchar(n)的区别)(转)
一.第一种 char(n)和varchar(n)的区别: 在这里我们可以清楚的看到他们表面的区别就是前面是否有var,在这里解释一下var是什么意思,var代表“可变的”的意思 下面看个例子: )// ...
- Mac os x 10.8 svn server的搭建
Mac自带了svn服务端和客户端,所以我们不用再去下载了. 1 但首先 sudo vi /etc/paths 将xcode里的Contents/developer/usr/bin加入到path ...
- IDEA Java/Scala混合项目maven打包
1.首先创建maven项目 2.创建成功后新建class,只有java的,没有scala的 3.修改pom.xml文件,引入scala <?xml version="1.0" ...
- DICOM医学图像处理:Orthanc Plugin SDK实现WADO服务
背景: Orthanc是博主发现的一个很完美的DICOM和HTTP服务端开源软件,前几篇分别介绍了Orthanc的基本使用.Orthanc从0.8.0版本之后给出了Plugin SDK,通过该SDK可 ...
- 【转载】GitHub中国区前100名到底是什么样的人
转载了这篇文章: http://www.jianshu.com/p/d29cba7934c9 这篇文章真是太牛了!转载过来涨涨见识,同时好好励志一把.还有,ruanyifeng怎么长那样... 哈 另 ...
- Hibernate中的session和load延迟载入矛盾问题,怎样解决?
假设延迟载入出现session close的情况下 方法1.在web.xml中配置spring的openSessionInViewFilter <filter> <filter-n ...
- CrtmpServer getApplication注册流程
最近在研究 CrtmpServer getApplication注册流程,以备查阅 图1. 加载动态库流程 图2配置application流程