poj 3708 Recurrent Function
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 1233 | Accepted: 336 |
Description
Dr. Yao is involved in a secret research on the topic of the properties of recurrent function. Some of the functions in this research are in the following pattern:

in which set {ai} = {1, 2, …, d-1} and {bi} = {0, 1, …, d-1}.
We denote:

Yao's question is that, given two positive integer m and k, could you find a minimal non-negative integer x that

Input
Output
Sample Input
2
1
1 0
4
7
2
1
0 1
100
200
-1
Sample Output
1
NO
Hint
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cstring>
#include<set>
#include<string>
#include<queue>
#include<cmath>
using namespace std;
#define INF 0x3f3f3f3f
const int N_MAX = +;
typedef long long ll;
// 大数类
class bign
{
#define base 1000
#define digit 3
private:
int _arr[];
int _m;
void bign::_simplify(void)
{
for (int i = ; i <= _m; i++)
{
if (i == _m && _arr[i] >= base) _m++;
_arr[i + ] += _arr[i] / base;
_arr[i] %= base;
}
}
public:
bign::bign(void) : _m() { memset(_arr, , sizeof(_arr)); }
bign::bign(int init) : _m()
{
memset(_arr, , sizeof(_arr));
_arr[] = init;
_simplify();
}
friend istream& operator >> (istream& fin, bign& a)
{
char init[]; int len, b, t;
fin >> init;
len = strlen(init); a._m = -;
for (int i = len - ; i >= ;)
{
t = , b = ;
for (int j = ; j < digit && i >= ; j++, i--)
{
t += (init[i] - '') * b;
b *= ;
}
a._arr[++a._m] = t;
}
return fin;
}
friend bign operator / (bign a, int b)
{
for (int i = a._m; i >= ; i--)
{
if (a._arr[i] < b && i == a._m && i != ) a._m--;
if (i > ) a._arr[i - ] += (a._arr[i] % b) * base;
a._arr[i] /= b;
} return a;
}
friend int operator % (bign a, int b)
{
for (int i = a._m; i >= ; i--)
{
if (i == ) return a._arr[i] % b;
else a._arr[i - ] += (a._arr[i] % b) * base;
}
}
friend bool operator == (bign a, bign b)
{
if (a._m != b._m) return false;
for (int i = ; i <= a._m; i++)
if (a._arr[i] != b._arr[i]) return false;
return true;
}
}; pair<ll,ll> trans(ll *a,ll m,ll k ) {//采用a置换,m为需要置换的数,k为m置换的终点,返回循环次和圈的大小
ll num = ;//num为从m到k的循环次数,不存在则为-1
ll tmp = m;
while (tmp!=k) {
if (num != && tmp == m) { num = -; break; }
num++;
tmp = a[tmp];
}
if (num == -)return make_pair(-, );
int loop = ;
while () {
if (loop != && tmp == k) { break; }
loop++;
tmp = a[tmp];
}
return make_pair(num,loop);
} ll gcd(ll a,ll b) {
if (b == )return a;
return gcd(b, a%b);
} ll extgcd(ll a,ll b,ll &x,ll &y) {
if (b == ) {
x = ; y = ;
return a;
}
ll ans = extgcd(b,a%b,x,y);
ll tmp = x;
x = y;
y = tmp - a / b*y;
return ans;
}
ll mod_inverse(ll a,ll m) {
ll x, y;
extgcd(a,m,x,y);
return (m + x%m) % m;
} pair<ll, ll>linear_congruence(const ll *A,const ll *B,const ll*M,const int& num) {
ll x = ,m = ;
for (int i = ; i < num;i++) {
ll a = A[i] * m, b = B[i] - A[i] * x, d = gcd(M[i], a);
if (b%d != )return make_pair(, -);
ll t = b / d*mod_inverse(a / d, M[i] / d) % (M[i] / d);
x = x + m*t;
m *= M[i] / d;
}
return make_pair((x%m+m)%m, m);
} ll d;
ll a[N_MAX], b[N_MAX];
bign k, m;
ll kd[N_MAX], md[N_MAX];//存储k和m的D进制形式
ll A[N_MAX], B[N_MAX], M[N_MAX];
int main() {
while(scanf("%lld",&d)&&d!=-) {
for (int i = ; i < d;i++)scanf("%lld",&a[i]);
for (int i = ; i < d;i++)scanf("%lld",&b[i]);
cin >> m >> k;
int num = ;
while (!(m==)) {
md[num++] = m%d;
m =m/ d;
}
int num2 = ;
while (!(k == )) {
kd[num2++] = k%d;
k = k / d;
}
if (num != num2) { puts("NO"); continue; }
pair<ll, ll>P;
bool flag = ;
for (int i = ; i < num-;i++) {
P = trans(b,md[i],kd[i]);
if (P.first == -) { puts("NO"); flag = ; break; }
A[i] = , B[i] = P.first, M[i] = P.second;
}
if (flag)continue; P = trans(a, md[num - ], kd[num - ]);
if (P.first == -) { puts("NO"); continue; }
A[num - ] = , B[num - ] = P.first, M[num - ] = P.second;
P = linear_congruence(A,B,M,num);
if(P.second==-) { puts("NO"); continue; }
else printf("%lld\n",P.first);
}
return ;
}
poj 3708 Recurrent Function的更多相关文章
- [转] POJ数学问题
转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合 ...
- acm数学(转)
这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...
- (转) Written Memories: Understanding, Deriving and Extending the LSTM
R2RT Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was ...
- 从rnn到lstm,再到seq2seq(一)
rnn的的公式很简单: 对于每个时刻,输入上一个时刻的隐层s和这个时刻的文本x,然后输出这个时刻的隐层s.对于输出的隐层s 做个ws+b就是这个时刻的输出y. tf.scan(fn, elems, i ...
- poj3708(公式化简+大数进制装换+线性同余方程组)
刚看到这个题目,有点被吓到,毕竟自己这么弱. 分析了很久,然后发现m,k都可以唯一的用d进制表示.也就是用一个ai,和很多个bi唯一构成. 这点就是解题的关键了. 之后可以发现每次调用函数f(x),相 ...
- ACM数学知识体系
在盛情收到学弟邀请给他们整理ACM数学方面的知识体系,作为学长非常认真的弄了好久,希望各学弟不辜负学长厚爱!!!非常抱歉因为电脑全盘格式化好多word.PPT都丢失,我尽量具体地给大家找到各知识点学习 ...
- Image Captioning 经典论文合辑
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...
- 通过百度echarts实现数据图表展示功能
现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...
随机推荐
- 实验十三 团队作业9:Beta冲刺与团队项目验收
实验十三 团队作业9:Beta冲刺与团队项目验收 实验时间 2019-6-20(21) Deadline: [6.20-6.26]之间任选连续3天的23:00,以团队随笔博文提交时间为准. 评分标准: ...
- C语言结构体和共用体_07
概述 定义结构体类型变量的方法 结构体变量的引用 结构体变量的初始化 结构体数组 指向结构体类型数据的指针 用指针处理链表 共用体 枚举类型 用 typedef定义类型 概述 定义一个结构体的一般形 ...
- Missing letters-freecodecamp算法题目
Missing letters 1.要求 从传递进来的字母序列中找到缺失的字母并返回它. 如果所有字母都在序列中,返回 undefined. 2.思路 设定缺失变量miss 在for循环遍历字符串的各 ...
- destoon手机端mobileurl函数增加城市分类参数
mobileurl函数在include/global.func.php 858行 共四个参数,moduleid-模型id,catid-分类id,itemid -文章id,page-页码 functio ...
- ACM/ICPC 2018亚洲区预选赛北京赛站网络赛 A.Saving Tang Monk II(优先队列广搜)
#include<bits/stdc++.h> using namespace std; ; ; char G[maxN][maxN]; ]; int n, m, sx, sy, ex, ...
- HDU - 5884 Sort (二分答案+贪心)
有n个数字,你需要把这n个数字合成一个数字,每次只能把k个数字合并成一个,花费为这k个数字的和. 给一个最大花费,问不超过这个最大花费的情况下,k的最小值. Sample Input 1 5 25 1 ...
- CodeForces - 899E Segments Removal (优先队列 + 链表)
给定一个序列,每次从序列中找一个长度最大的元素相同的片段,删除它. 如果长度相同,删除最靠左边的那个片段. 问,需要删几次. 用链表处理删除片段.对于删除之后两边又能连成一个片段的那种情况,用set记 ...
- Linux学习-SRPM 的使用 : rpmbuild (Optional)
新版的 rpm 已经 将 RPM 与 SRPM 的指令分开了,SRPM 使用的是 rpmbuild 这个指令,而不是 rpm 喔! 利用默认值安装 SRPM 文件 (--rebuid/--recomp ...
- [转载]C语言头文件的作用
最近在工作当中遇到了一点小问题,关于C语言头文件的应用问题,主要还是关于全局变量的定义和声明问题.学 习C语言已经有好几年了,工作使用也近半年了,但是对于这部分的东西的确还没有深入的思考过.概念上还是 ...
- JAVA-基础(一)
1.一个变量可以声明为final,这样做的目的是阻止它的内容被修改.这意味着在声明final 变量的时候,你必须初始化它(在这种用法上,final类似于C/C++中的const). 例如: final ...