hive优化总结
一、表设计
合理分表
合理设计表分区,静态分区、动态分区
二、扫描相关
1、谓词下推(Predicate Push Down)
2、列裁剪(Column Pruning)
在读数据的时候,只关心感兴趣的列,而忽略其他列
对于查询:select a,b from src where e < 10
其中,src包含5个列(a、b、c、d、e),列c、d将会被忽略,只会读取a,b,e列
选项默认为真,hive.optimize.cp=true
3、分区剪裁(Partition Pruning)
在查询的过程中减少不必要的分区
对于下列查询:select * from t1 join (select * from t2) subq on (t1.c1 = subq.c2) where subq.prtn =100;
会在子查询中就考虑subq.prtn =100条件,从而减少读入的分区数目
选项默认为真,hive.optimize.pruner=true
三、关联JOIN相关
1、JOIN操作左边为小表
应该将条目少的表/子查询放在Join操作符的左边。
原因是在Join操作的Reduce阶段,位于Join操作符左边的表的内容会被加载到内存,将条目少的表放在左边可以有效减少OOM(内存溢出)的几率
原理就是关系数据库中驱动表与被驱动表
如果是mapjoin,可以放在右边
2、JOIN启动的job个数
如果join的key相同,不管有多少个表,都会合并为一个Map-Reduce
一个Map-Reduce(Tez)任务,而不是‘n’个
在做outer join的时候也是一样
insert over write table pv_users select pv.pageid,u.age from page_view pv join user u on (pv.userid=u.userid) join newuser x on (u.userid = x.userid)
3、MapJoin
join操作在map阶段完成,不再需要reduce,前提条件是需要的数据在map的过程可以访问到
新版本,Hint已经去了,这里只是演示,应该尽可能使用mapjoin
不会倾斜,默认64M来并发处理数据
对表的大小有限制,通常来讲大于100M,就做不了了
insert over write table pv_users select /*+MAPJOIN(pv)*/pv.pageid,u.age from page_view pv join user u on (pv.userid=u.userid);
需要设置的相关数据hive.join.emit.inter-1,hive.mapjoin.size.key,hive.map-join.cache.numrows。
4、join不支持不等值连接
!=、<>、>、<在join的on条件中不支持
select ……from ……
join ……
on (a.key!=b.key)
因为如果用不等值号的话,它会查其他节点上的数据,那么其他查不到的,mapreduce是不支持这样的机制,所以hive是不支持不等值连接的
四、分组Group By相关
1、Skew In Data
主要关注的是数据倾斜
hive.groupby.skewindata = true
当选项设定为true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的
第二个MR Job再根据预处理的数据结果按照Group By Key分布 到Reduce中(这个过程可以保证相同的Group By Key被分布到一个Reduce中),最后完成最终的聚合操作
没法通过部分值推导出最终值的,如中位数和众数
五、合并小文件
合并功能会增加任务运行时间
合并操作的性能很大程度上取决与“单个reduce端输出文件大小”。Reduce端的输出越大,耗时越长
合并操作会对每个Hive任务增加一次MapRedce任务
原因:
Hive在处理时,Client会从MetaStore中把文件的名字读到内存中,小文件过多会导致在SQL解析过程中,可能就根本就解析不出来
通过合并Map和Reduce的结果文件来消除小文件影响。需要设定的参数:
hive.merge.mapfiles=true,是否合并Map输入文件默认为true。
hive.merge.mapredfiles=false,设定是否合并Reduce输出文件,默认为false。
hive.merge.size.per.task=256*1000*1000,设定合并文件的大小,默认为256000000。
六、多作业
共享中间结果集
多作业共用输入或输出,如下场景
每日几千个作业访问大日志表trackinfo
访问多个表的相同统计存在于很多作业里面
常用复杂或低效统计统计给出,以避免上层作业过多计算
七、参数调优
有时会起到很好效果
如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。
如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【刘超★ljc】。
本文版权归作者,禁止转载,否则保留追究法律责任的权利。
hive优化总结的更多相关文章
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
- Hive优化案例
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...
- 一起学Hive——总结常用的Hive优化技巧
今天总结本人在使用Hive过程中的一些优化技巧,希望给大家带来帮助.Hive优化最体现程序员的技术能力,面试官在面试时最喜欢问的就是Hive的优化技巧. 技巧1.控制reducer数量 下面的内容是我 ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- 大数据开发实战:Hive优化实战3-大表join大表优化
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...
- 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...
- Hadoop生态圈-hive优化手段-作业和查询优化
Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- 【转】Hive优化总结
优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解Hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoo ...
- hive 优化 (转)
Hive优化 Hive优化目标 在有限的资源下,执行效率更高 常见问题 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce ...
随机推荐
- TensorFlow进阶(五)---图与会话
图与会话 图 tf.Graph TensorFlow计算,表示为数据流图.一个图包含一组表示 tf.Operation计算单位的对象和tf.Tensor表示操作之间流动的数据单元的对象.默认Graph ...
- 如何查看ESXi的网卡的MAC地址?
直接上图 图一, 物理网卡 图二, vmkernel虚拟网卡 参考资料 ============================ How To Determine Vmkernel Inter ...
- html5的classList属性介绍和原生js实现jQuery的addClass,removeClass,hasClass方法
其实html5已经扩展了class操作的相关API,其中classList属性就以及实现了class的增删和判断. classList属性的方法有: add(value) 添加类名,如果有则不添加 c ...
- python 安装whl文件
对于安装whl格式的文件,首先要安装wheel包 利用 pip install wheel或下载再安装: 下载地址: https://pypi.python.org/pypi/wheel 解压后安装: ...
- java中构建同时兼容linux和windows程序时遇到的文件路径分割符问题解决方案
最近在做一个自动上传文件的客户端,因为 file.getAbsolutePath() 在Mac和linux下的分割符是“/”,而在windows操作系统下的分割符则是“\”,我们程序中固然可以通过调 ...
- 【转】TCP分段与IP分片
原文: :https://www.jianshu.com/p/f9a5b07d99a2 -------------------------------------------------------- ...
- php的opcache缓存扩展(php页面代码刷新速度)
opcache (全程 zend opcache): 从php5.5开始,默认提供的php脚本缓存扩展,编译php5.5时加上参数--enable-opcache就可以编译opcache了,只是要启用 ...
- UNIX网络编程读书笔记:UNIX域协议
概述 UNIX域协议并不是一个实际的协议族,而是在单个主机上执行客户/服务器通信的一种方法,所用API与在不同主机上执行客户/服务器通信所用的API(套接口API)相同.UNIX域协议可视为进程间通信 ...
- 转:不在同一个服务器上的数据库之间的数据操作(oracle/sql server的对比)
如何操做不在同一个数据库中的数据操作: 一.对于SQL server来讲: 1.采用创建链接服务器的方式: (1).创建链接服务器 exec sp_addlinkedserver ...
- IDEA中同窗口导入新的maven项目
创建请看这个:http://www.cnblogs.com/oskyhg/p/6649266.html 下边开始导入: 完毕. 结果展示: