5.1循环序列模型

觉得有用的话,欢迎一起讨论相互学习~Follow Me

1.3循环神经网络模型

为什么不使用标准的神经网络

  • 假如将九个单词组成的序列作为输入,通过普通的神经网网络输出输出序列,

    1. 在不同的例子中输入数据和输出数据具有不同的长度,即每个数据不会有一样的长度
    • 也许每个语句都有最大长度,能够通过Padding 的方式填充数据,但总体来说不是一个好的表达方式。
    1. 不共享从文本的不同位置上学到的特征
    • 例如普通神经网络可以学习到Harry这个单词出现在\(x^{<1>}\)的位置,但是如果Harry这个单词出现在\(x^{<4>}\)的位置,普通的神经网络不能识别的出来。
    1. 输入量巨大,如果词典中最大的单词量是1W的话,则单词的one-hot表示向量将是一个1W维的数据。而一个训练语句中的单词数为\(T_{x}\),则输入数据的维度为\(T_{x} * 1W\)此数据维度是十分巨大的。

      循环神经网络模型


      \[a^{<0>}=\vec{0}\]
      \[a^{<1>}=g(W_{aa}a^{<0>}+W_{ax}X^{<1>}+b_{a})\]
      \[//g表示非线性激活函数(Tanh/ReLU)\]
      \[\hat{y}^{<1>}=g(W_{ya}a^{<1>}+b_{y})\]
      \[//g表示非线性激活函数,但是不一定要与上面的g相同(Sigmoid)\]
      \[a^{<T_{x}>}=g(W_{aa}a^{<T_{x}-1>}+W_{ax}X^{<T_{x}>}+b_{a})\]
      \[\hat{y}^{<T_{x}>}=g(W_{ya}a^{<T_{x}>}+b_{y})\]

简化循环神经网络数学公式

  • 将\(W_{aa}和W_{ax}合并成一个大的矩阵W_{a},将a^{<t-1>}和X^{<t>}合并成[a^{<t-1>},X^{<t>}]\)
    具体如下图所示:

1.4通过时间的反向传播Backpropagation through time

[DeeplearningAI笔记]序列模型1.3-1.4循环神经网络原理与反向传播公式的更多相关文章

  1. [DeeplearningAI笔记]序列模型3.9-3.10语音辨识/CTC损失函数/触发字检测

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.9语音辨识 Speech recognition 问题描述 对于音频片段(audio clip)x ,y生成文本 ...

  2. [DeeplearningAI笔记]序列模型3.7-3.8注意力模型

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of ...

  3. [DeeplearningAI笔记]序列模型3.6Bleu得分/机器翻译得分指标

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6Bleu得分 在机器翻译中往往对应有多种翻译,而且同样好,此时怎样评估一个机器翻译系统是一个难题. 常见的解决 ...

  4. [DeeplearningAI笔记]序列模型3.3集束搜索

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.3 集束搜索Beam Search 对于机器翻译来说,给定输入的句子,会返回一个随机的英语翻译结果,但是你想要一 ...

  5. [DeeplearningAI笔记]序列模型3.2有条件的语言模型与贪心搜索的不可行性

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2选择最可能的句子 Picking the most likely sentence condition lan ...

  6. [DeeplearningAI笔记]序列模型3.1基本的 Seq2Seq /image to Seq

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1基础模型 [1] Sutskever I, Vinyals O, Le Q V. Sequence to Se ...

  7. [DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10长短期记忆网络(Long short term memory)LSTM Hochreiter S, Schmidhu ...

  8. [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...

  9. [DeeplearningAI笔记]序列模型1.5-1.6不同类型的循环神经网络/语言模型与序列生成

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和 ...

随机推荐

  1. 2017年度网络安全服务企业TOP50

    何谓“大安全”? 近几年来,网络安全和信息安全领域不时出现引发社会各界关注的事件. 2014年,政府采购计划对WIN8说“不”,同年,中央网络安全和信息化领导小组成立,将网络安全上升到了国家战略高度, ...

  2. Scrum立会报告+燃尽图(十一月二十二日总第三十次):加强回归测试

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2410 项目地址:https://git.coding.net/zhang ...

  3. Scrum立会报告+燃尽图(十月十三日总第四次):前期宣传相关工作

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2194 Scrum立会master:刘欣 一.小组介绍 组长:付佳 组员: ...

  4. C++:const用法的简单总结

    一.对变量的修饰 在c++中,如果我们希望定义一个值不会被改变的变量,那么可以用关键字const对它进行修饰,被修饰后的变量其作用相当于一个常量 //这两种方式等价 2 语法1:const 类型名 变 ...

  5. 2018软工实践—Alpha冲刺(1)

    o## 队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作,对多个目标检测及文字识别模型进行评估.实验 ...

  6. 福大软工1816:Beta(7/7)

    Beta 冲刺 (7/7) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务 文字/口头描述 组织会议 wxpy中多个功能的开发 整 ...

  7. CocoaPods 创建私有仓库

    这里有个坑首先需要注意,创建私有cocoapods仓库需要两个git仓库,即代码仓库,Specs文件仓库. 一.创建私有库 1.创建自己源码仓库,假设是A.git; 2.对A仓库: git add . ...

  8. HDU 5617 Jam's maze dp+滚动数组

    题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5617 bc(中文):http://bestcoder.hdu.edu.cn/contest ...

  9. 0512 SCRUM团队项目3.0

    题目 SCRUM 流程的步骤2: Spring 计划 1. 确保product backlog井然有序.(参考示例图1) 2. Sprint周期,一个冲刺周期,长度定为两周,本学期还有三个冲刺周期. ...

  10. 【第二周】scrum站立会议

    1.站立会议:敏捷软件开发方法论Scrum的相关技术之一,是scrum的最佳实践 2.具体形式:每天的同一时间让团队成员面对面站立交流工作进展 3.功能: (1)让团队所有人都相互知道彼此的进展,了解 ...