【CodeForces】914 E. Palindromes in a Tree 点分治
【题意】给定一棵树,每个点都有一个a~t的字符,一条路径回文定义为路径上的字符存在一个排列构成回文串,求经过每个点的回文路径数。n<=2*10^5。
【算法】点分治
【题解】状压20位的二进制表示一条路径的字符状态,点分治过程中维护扫描过的路径只须维护状态桶数组,t[i]表示前面状态为i的路径条数。
合并:考虑当前状态为j,要使合并的状态满足条件即i^j=1<<k(0<=k<20)或i^j=0,移项得i=j^(1<<k)或i=j,所以路径数是Σ t [ j^(1<<k) ]+t[j]。
统计每个点:对于当前要处理的重心x,先遍历所有子树得到整个t[]数组,然后对每个子树先删除其在桶里的状态,然后扫一遍贡献子树中每个点,最后将子树的状态加回桶中。
这样可以做到每条路径都贡献到每个点,要特殊处理重心的贡献。
复杂度O(n log n)。
#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,maxN=;
int tot,first[maxn],sz[maxn],vis[maxn],sum,root,a[maxn],u,v,n;
ll ans[maxn],t[maxN];
struct edge{int v,from;}e[maxn*]; void insert(int u,int v){tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;}
void getroot(int x,int fa){
sz[x]=;
bool ok=;
for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa&&!vis[e[i].v]){
getroot(e[i].v,x);
sz[x]+=sz[e[i].v];
if(sz[e[i].v]>sum/)ok=;
}
if(ok&&sz[x]>=sum/)root=x;
}
void dfs(int x,int fa,int p,int s){
t[s^=(<<a[x])]+=p;
for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa&&!vis[e[i].v])dfs(e[i].v,x,p,s);
}
ll calc(int x,int fa,int s){
s^=(<<a[x]);ll num=t[s];
for(int i=;i<;i++)num+=t[s^(<<i)];
for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa&&!vis[e[i].v])num+=calc(e[i].v,x,s);
ans[x]+=num;
return num;
}
void solve(int x,int s){
vis[x]=;
dfs(x,,,);
ll num=t[];
for(int i=;i<;i++)num+=t[<<i];
for(int i=first[x];i;i=e[i].from)if(!vis[e[i].v]){
dfs(e[i].v,x,-,<<a[x]);
num+=calc(e[i].v,x,);
dfs(e[i].v,x,,<<a[x]);
}
ans[x]+=num/;
dfs(x,,-,);
for(int i=first[x];i;i=e[i].from)if(!vis[e[i].v]){
if(sz[e[i].v]>sz[x])sum=s-sz[x];else sum=sz[e[i].v];
getroot(e[i].v,x);
solve(root,sum);
}
}
char s[maxn];
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
insert(u,v);insert(v,u);
}
scanf("%s",s+);
for(int i=;i<=n;i++)a[i]=s[i]-'a';
sum=n;
getroot(,);
solve(root,sum);
for(int i=;i<=n;i++)printf("%lld ",ans[i]+);
return ;
}
【CodeForces】914 E. Palindromes in a Tree 点分治的更多相关文章
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- CF914E Palindromes in a Tree(点分治)
link 题目大意:给定一个n个点的树,每个点都有一个字符(a-t,20个字符) 我们称一个路径是神犇的,当这个路径上所有点的字母的某个排列是回文 求出对于每个点,求出经过他的神犇路径的数量 题解: ...
- codeforces 1065F Up and Down the Tree
题目链接:codeforces 1065F Up and Down the Tree 题意:给出一棵树的节点数\(n\)以及一次移动的最大距离\(k\),现在有一个标记在根节点1处,每一次可以进行一下 ...
- Codeforces 914H Ember and Storm's Tree Game 【DP】*
Codeforces 914H Ember and Storm's Tree Game 题目链接 ORZ佬 果然出了一套自闭题 这题让你算出第一个人有必胜策略的方案数 然后我们就发现必胜的条件就是树上 ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- CodeForces 1251B --- Binary Palindromes
[CodeForces 1251B --- Binary Palindromes] Description A palindrome is a string t which reads the sam ...
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- codeforces 914E Palindromes in a Tree(点分治)
You are given a tree (a connected acyclic undirected graph) of n vertices. Vertices are numbered fro ...
- Palindromes in a Tree CodeForces - 914E
https://vjudge.net/problem/CodeForces-914E 点分就没一道不卡常的? 卡常记录: 1.把不知道为什么设的(unordered_map)s换成了(int[])s ...
随机推荐
- VC++调试基础
一.调试基础 调试快捷键 F5: 开始调试 Shift+F5: 停止调试 F10: 调试到下一句,这里是单步跟踪 F11: 调试到下一句,跟进函数内部 Shift+F11: 从当前函数中跳 ...
- 经典SQL语句基础50题
很全面的sql语句大全.都是很基础性的,今天特意整理了下.大家互相学习.大家有好的都可以分享出来, 分享也是一种快乐. --创建数据库 create database SQL50 --打开SQL50 ...
- 自签证书 doesn't match any of the subject alternative names
出现这个的原因是https中的域名或者IP,与证书中登记的不一致. 如果是自签证书的话,可以根据具体需要重新生成证书. 还有一种解决方案是在java中跳过这个检查. 绕过检查分两类,一个是绕过证书在C ...
- 如何在windows下Apache环境开启htaccess伪静态功能
以下文章来自于网络,只做学习用 很多国人习惯用windows服务器或者在windows系统下调试PHP程序,在调试货使用的时候就遇到开启伪静态的各种问题,今天在网络上搜集了一些开启伪静态需要注意 ...
- oracle 绝对值小于1的数值显示小数点前面的0
SELECT DECODE(TRUNC(-.98),0,REPLACE(TO_CHAR(-.98), '.', '0.'),TO_CHAR(-.98))FROM DUAL;
- Python @retry装饰器的使用与实现案例(requests请求失败并重复请求)
在爬虫代码的编写中,requests请求网页的时候常常请求失败或错误,一般的操作是各种判断状态和超时,需要多次重试请求,这种情况下,如果想优雅的实现功能,可以学习下retrying包下的retry装饰 ...
- 查询出menupath字段中 出现 “- "(横杆)大于3次的 记录
- 最小生成树-Borůvka算法
一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...
- 【uoj#21】[UR #1]缩进优化 数学
题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...
- 使用Runtime.getRuntime().exec()方法的几个陷阱
Process 子类的一个实例,该实例可用来控制进程并获得相关信息.Process 类提供了执行从进程输入.执行输出到进程.等待进程完成.检查进程的退出状态以及销毁(杀掉)进程的方法. 创建进程的方法 ...