BZOJ4818 LOJ2002 SDOI2017 序列计数


Description

Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数。
Alice还希望,这n个数中,至少有一个数是质数。
Alice想知道,有多少个序列满足她的要求。

Input

一行三个数,n,m,p。
1<=n<=10^9,1<=m<=2×10^7,1<=p<=100

Output

一行一个数,满足Alice的要求的序列数量,答案对20170408取模。

Sample Input

3 5 3

Sample Output

33


#include<bits/stdc++.h>
using namespace std;
#define M 20000010
#define N 110
#define Mod 20170408
#define LL long long
int n,m,p,pri[M];
LL s[N],tot=0;
bool vis[M];
struct Matrix{
LL t[N][N];
Matrix(){memset(t,0,sizeof(t));}
Matrix operator *(const Matrix b)const{
Matrix c;
for(int i=0;i<p;i++)
for(int k=0;k<p;k++)
for(int j=0;j<p;j++){
c.t[i][j]+=t[i][k]*b.t[k][j]%Mod;
if(c.t[i][j]>Mod)c.t[i][j]-=Mod;
}
return c;
}
};
void init(){
vis[1]=1;
for(int i=2;i<M;i++){
if(!vis[i])pri[++tot]=i;
for(int j=1;j<=tot&&i*pri[j]<M;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
}
Matrix fast_pow(Matrix a,int b){
Matrix ans;
for(int i=0;i<p;i++)ans.t[i][i]=1;
while(b){
if(b&1)ans=ans*a;
a=a*a;
b>>=1;
}
return ans;
}
int solve(){
Matrix res;
for(int i=0;i<p;i++)
for(int j=0;j<p;j++)res.t[i][(i+j)%p]=s[j];
res=fast_pow(res,n);
return res.t[0][0];
}
int main(){
init();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=m;i++)++s[i%p];
LL ans=solve();
for(int i=1;i<=m;i++)if(!vis[i])--s[i%p];
ans-=solve();
printf("%lld",(ans+Mod)%Mod);
// system("pause");
return 0;
}

BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*的更多相关文章

  1. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  2. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  3. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

  4. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  5. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  6. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  7. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  8. HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  9. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

随机推荐

  1. JAXB和XStream比较

    转自:https://www.cnblogs.com/tang9139/p/4825610.html http://www.cnblogs.com/wlsblog/p/7452882.html 这两东 ...

  2. cocos2d-x入门三 分层设计框架

    helloworld就是一个完整的框架,大致分为四个层次如下: 导演-------场景------图层-----精灵 Director-----Scene----Layer----Sprite 导演类 ...

  3. git rm -r --cache命令 及 git .gitignore 文件

    git 的  .gitignore 文件的作用是在代码提交时自动忽略一个文件.不将其纳入版本控制系统. 比如.一般我们会忽略IDE自动生成的配置文件等. 如果一个你要忽略的文件已经纳入到了git ,也 ...

  4. 使用idea引入注解@SpringBootApplication报错Cannot resolve symbol 'SpringBootApplication'

    我在使用idea时,在类上使用注解@SpringBootApplication,但是一直报错. Cannot resolve symbol 'SpringBootApplication' 网络上有很多 ...

  5. [javascript]Dom操作笔记

    1.为一个节点同时设置多个属性 $("div[aria-describedby='F53_batch_history']").attr({"display":& ...

  6. Eclemma的安装

    和TestNG安装一致 Help -->Install New Software -->  Add Name: Eclemma Location:http://update.eclemma ...

  7. PANDAS 数据合并与重塑(concat篇)

    转自:http://blog.csdn.net/stevenkwong/article/details/52528616

  8. DXVA2解码数据用texture纹理渲染

    FFmpeg DXVA2解码得到的数据使用surface来承载的,surface限制很多,如果能用纹理来渲染的话,那我们就可以充分开发D3D,比如可以用坐标变换来实现电子放大的功能,还可以用坐标变换来 ...

  9. IOS-小技巧总结,绝对有你想要的

    1.App名称的修改 许多个人开发者或许会有和我一样的经历,开发一个App途中会想到更合适的名字,这时候变会修改工程名以达到App名称改变的目的,其实你可以一步到位—— 在info.plist中添加一 ...

  10. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...