ZOJ 3687 The Review Plan I 容斥原理
一道纯粹的容斥原理题!!不过有一个trick,就是会出现重复的,害我WA了几次!!
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<set>
#include<vector>
#define ll long long
#define mod 55566677
using namespace std;
int p[],ans;
int m,n;
bool visd[],visc[],vis[][];
struct point
{
int a,b;
}q[];
void dfs(int s,int i,int f)
{
ans=(ans+f*p[n-s])%mod;
while(ans<) ans=(ans+mod)%mod;
for(int k=i+;k<m;k++){
if(!visd[q[k].a]&&!visc[q[k].b]){
visd[q[k].a]=;
visc[q[k].b]=;
dfs(s+,k,-f);
visd[q[k].a]=;
visc[q[k].b]=;
}
}
}
int main()
{
int i,a,b,j;
p[]=p[]=;
for(i=;i<=;i++) p[i]=((ll)p[i-]*i)%mod;
while(scanf("%d%d",&n,&m)!=EOF){
memset(vis,,sizeof(vis));
memset(visd,,sizeof(visd));
memset(visc,,sizeof(visc));
for(j=i=;i<m;i++){
scanf("%d%d",&a,&b);
if(!vis[a][b]){
vis[a][b]=;
q[j].a=a;
q[j++].b=b;
}
}
m=j;
ans=;
for(i=;i<m;i++){
visd[q[i].a]=;
visc[q[i].b]=;
dfs(,i,);
visd[q[i].a]=;
visc[q[i].b]=;
}
ans=(p[n]-ans)%mod;
while(ans<) ans=(ans+mod)%mod;
printf("%d\n",ans);
}
return ;
}
ZOJ 3687 The Review Plan I 容斥原理的更多相关文章
- ZOJ 3687 The Review Plan I
The Review Plan I Time Limit: 5000ms Memory Limit: 65536KB This problem will be judged on ZJU. Origi ...
- (转)ZOJ 3687 The Review Plan I(禁为排列)
The Review Plan I Time Limit: 5 Seconds Memory Limit: 65536 KB Michael takes the Discrete Mathe ...
- The Review Plan I-禁位排列和容斥原理
The Review Plan I Time Limit: 5000ms Case Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer ...
- zoj.3868.GCD Expectation(数学推导>>容斥原理)
GCD Expectation Time Limit: 4 Seconds Memory Limit: 262144 KB ...
- ACM学习历程—ZOJ 3868 GCD Expectation(莫比乌斯 || 容斥原理)
Description Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, ...
- ZOJ 3687
赤裸的带禁区的排列数,不过,难点在于如何用程序来写这个公式了.纠结了好久没想到,看了看别人的博客,用了DFS,实在妙极,比自己最初想用枚举的笨方法高明许多啊.\ http://blog.csdn.ne ...
- harukaの赛前日常
REMEMBER US. haruka是可爱的孩子. 如题,此博客用来记录我停课后的日常. Dear Diary 10.8 上午考试. T1,直接枚举每一个点最后一次被修改的情况.(100pts) T ...
- [容斥原理] zoj 3556 How Many Sets I
主题链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=4535 How Many Sets I Time Limit: 2 ...
- ZOJ 3233 Lucky Number --容斥原理
这题被出题人给活活坑了,题目居然理解错了..哎,不想多说. 题意:给两组数,A组为幸运基数,B组为不幸运的基数,问在[low,high]区间内有多少个数:至少被A组中一个数整除,并且不被B中任意一个数 ...
随机推荐
- HDU 1754 I Hate It (线段树)
题目链接 Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老 ...
- 黑色的网站后台管理系统ui界面——后台
链接:http://pan.baidu.com/s/1pLffwE3 密码:m4v6
- BurpSuite 设置Hostname Resolution
#写在前面 这种情况你可能遇到过: 对方用了CDN, 你查到了对方真实IP, 但还不能100%肯定. 这时候, 最好的测试就是 win/linux修改HOST文件 Win重启电脑 Linux重启网络 ...
- python并发编程之gevent协程(四)
协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...
- 宋牧春: Linux设备树文件结构与解析深度分析(1) 【转】
转自:https://mp.weixin.qq.com/s/OX-aXd5MYlE_YoZ3p32qWA 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...
- ProxySQL 监控和统计
ProxySQL 监控和统计 很多有价值的统计数据在stats和monitor库中. admin@127.0.0.1 [(none)]>SHOW TABLES FROM stats; +---- ...
- 【BubbleCup X】D. Exploration plan
这个题首先一眼能看出二分答案…… 毕竟连可爱的边界都给你了. 下面就是怎么check 首先预处理跑一遍floyed,预处理出最短路. 用网络流判断能否达到即可. #include<bits/st ...
- WPF之DataGrid--列的前台及后台实现
一.前台实现 在xaml里可以很轻松地实现一个如下图所示的DataGrid <StackPanel> <ComboBox Width="50" Horizonta ...
- 解决su – 后显示-bash-4.1#
<1>现象 设置tfs的管理用户时. su - admin时,出现 -bash-4.1# <2>解决 chown admin:admin /home/admin ...
- [转载]FFmpeg完美入门[1] - FFmpeg介绍及安装
1 FFmpeg简介 FFmpeg是一个开源免费跨平台的视频和音频流方案,属于自由软件,采用LGPL或GPL许可证(依据你选择的组件).它提供了录制.转换以及流化音视 频的完整解决方案.它包含了非常先 ...