2018ECfinal J. Philosophical Balance

题目大意:

给出一个字符串 \(s\) ,你需要给每一个 \(i\) 一个 \([0,1]\) 之间的权值 \(k_i\) ,且满足 \(\sum k_i=1\) 。并且最小化

\[\max_{i=1}^n(\sum_{j=1}^nlcp(suf(s,j),suf(s,i))\times k_j)
\]

先证明一个比较简单的结论,把 \(s\) 的后缀树建出来,考虑后缀树的每一个子树,如果子树的根是 \(s\) 的一个后缀,那么分配到这个子树里面的所有权值必然全部分配到根上。

假设这个子树 \(u\) 里第 \(i\) 个节点分配了 \(k_i\) 的权值,那么对于根的贡献是 \(\sum{k_i}\times len_{u}\) ,考虑对其它点的贡献是每一个权值乘在其某个祖先的 \(len\) 上,由于 \(len\) 向上递减,根的贡献固定,那么显然全部放在根上最优。

设 \(f(u)\) 为后缀树上 \(u\) 节点所在子树内部的答案,当 \(u\) 是后缀节点的时候 \(f(u)=len(fa_u)-len(u)\) 。否则只需要合并每一个儿子的 \(f(v)\) 。

考虑儿子与儿子之间是独立的,不同儿子之间的 \(lcp\) 都是 \(u\) ,也就是说 \(u\) 代表的串无论 \(i\) 是什么都会被算 \(\sum k_i=1\) 的系数。那么 \(u\) 到父亲的边直接加上去就可以。然后剩下的东西是一个纳什均衡的模型,可以当做博弈来理解,最优解的一定是每个儿子的贡献相等,乱推一波可以得到式子:

\[\sum {k_i} = 1 \\
f_1k_1 = f_2k_2=\dots= f_mk_m= x \\
\sum \frac{x}{f_i}=1 \\
\frac{1}{x} = \sum \frac{1}{f_i} \\
x = \frac{1}{\sum \frac{1}{f_i}}
\]

其实上面那个证明带进去发现当根节点是后缀节点的时候贡献是相等的,打表一下应该不难看出这个后面那个结论了,之后 \(\mathcal O(n)\) 算一算就做完了。

/*program by mangoyang*/
#pragma GCC optimize("Ofast", "inline")
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define double long double
const int N = 500005;
vector<int> vec[N];
char s[N];
ll all, val[N]; int n, cnt;
namespace SAM{
vector<int> g[N];
int ch[N][26], pos[N], fa[N], len[N], size = 1, tail = 1;
inline int newnode(int x){ return len[++size] = x, size; }
inline void ins(int c, int x){
int p = tail, np = newnode(len[p] + 1); pos[np] = x;
for(; p && !ch[p][c]; p = fa[p]) ch[p][c] = np;
if(!p) return (void) (fa[np] = 1, tail = np);
int q = ch[p][c];
if(len[q] == len[p] + 1) fa[np] = q;
else{
int nq = newnode(len[p] + 1);
fa[nq] = fa[q], fa[q] = fa[np] = nq;
for(int i = 0; i < 26; i++) ch[nq][i] = ch[q][i];
for(; p && ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
}tail = np;
}
inline void addedge(){
for(int i = 2; i <= size; i++) g[fa[i]].push_back(i);
}
inline double gao(int u, int d){
if(pos[u]) return d;
double res = 0;
for(int i = 0; i < (int) g[u].size(); i++)
res += 1.0 / gao(g[u][i], len[g[u][i]] - len[u]);
return 1.0 / res + d;
}
}
int main(){
int T; read(T);
while(T--){
for(int i = 1; i <= SAM::size; i++){
SAM::g[i].clear();
SAM::pos[i] = SAM::fa[i] = SAM::len[i] = 0;
memset(SAM::ch[i], 0, sizeof(SAM::ch[i]));
}
SAM::tail = SAM::size = 1;
scanf("%s", s + 1); n = strlen(s + 1);
for(int i = n; i; i--) SAM::ins(s[i] - 'a', i);
SAM::addedge();
printf("%.10Lf\n", SAM::gao(1, 0));
}
}

2018ECfinal J. Philosophical Balance的更多相关文章

  1. 【做题】ECFinal2018 J - Philosophical … Balance——dp

    原文链接 https://www.cnblogs.com/cly-none/p/ECFINAL2018J.html 题意:给出一个长度为\(n\)的字符串\(s\),要求给\(s\)的每个后缀\(s[ ...

  2. 2018 EC-Final 部分题解 (A,J)

    目录 The 2018 ICPC Asia-East Continent Final A.Exotic - Ancient City(思路 并查集) J.Philosophical - Balance ...

  3. POJ 1013 Counterfeit Dollar

    Counterfeit Dollar Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36206   Accepted: 11 ...

  4. asp.net使用MVC4框架基于NPOI做导出数据到Excel表

    NPOI 是 POI 项目的 .NET 版本.POI是一个开源的Java读写Excel.WORD等微软OLE2组件文档的项目. 使用 NPOI 你就可以在没有安装 Office 或者相应环境的机器上对 ...

  5. POJ 1013 Counterfeit Dollar 集合上的位运算

    Description Sally Jones has a dozen Voyageur silver dollars. However, only eleven of the coins are t ...

  6. poj1837挂砝码

    解法(背包DP问题) (下为转) 其实感觉 像此题这种类型的并不属于dp范畴 虽然程序看起来使用的是递推这一过程,但总不能说开个二重循环就是dp吧 如果只从求解上来讲(不考虑数据值的范围), 只有枚举 ...

  7. LB(Load balance)负载均衡集群--{LVS-[NAT+DR]单实例实验+LVS+keeplived实验} 菜鸟入门级

    LB(Load balance)负载均衡集群 LVS-[NAT+DR]单实例实验 LVS+keeplived实验 LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一 ...

  8. POJ1837 Balance[分组背包]

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13717   Accepted: 8616 Descript ...

  9. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

随机推荐

  1. 【Explain】mysql之explain详解(分析索引的最佳使用)

    在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain 这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句 ...

  2. 使用showplan.sql分析sql Performance

    在HelloDBA网站找到一个分析sql性能的工具-showplan,记录一下 showplan.sql下载路径:http://www.HelloDBA.com/Download/showplan.z ...

  3. SVM问题再理解与分析——我的角度

    SVM问题再理解与分析--我的角度 欢迎关注我的博客:http://www.cnblogs.com/xujianqing/ 支持向量机问题 问题先按照几何间隔最大化的原则引出他的问题为 上面的约束条件 ...

  4. ab的使用方法【转】

    使用方法 ab -n 800 -c 800  http://192.168.0.10/ (-n发出800个请求,-c模拟800并发,相当800人同时访问,后面是测试url) ab -t 60 -c 1 ...

  5. 华东师范大学第十届ECNU Coder程序设计竞赛

    华东师范大学第十届ECNU Coder程序设计竞赛 浮点数模运算 solution 转成整数然后取模. 时间复杂度:\(O(1)\) 数螃蟹 solution 找出公差出现次数最多的作为公差,然后找出 ...

  6. TreeSet之定制排序和自然排序

    TreeSet的几大特点: 1.TreeSet中存储的类型必须是一致的,不能一下存int,一下又存string 2.TreeSet在遍历集合元素时,是有顺序的[从小到大](我的理解,如果存的字母,按字 ...

  7. PHP缓存加速插件 XCache 、 ZendOpcache 安装

    PHP缓存原理 当客户端请求一个PHP程序时,服务器的PHP引擎会解析该PHP程序,并将其编译为特定的操作码(OperateCode,简称opcode)文件,该文件是PHP代码的一种二进制表示方式.默 ...

  8. 微信小程序-textarea中的文本读取以及换行问题

    今天客户那边要求textarea中输入的问题可以按回车键换行,而我使用的是bindinput获取值,但是呢bindinput 处理函数的返回值并不会反映到 textarea 上,按回车键导致点击换行符 ...

  9. oracle 12C wmsys.wm_concat()函数

    http://blog.itpub.net/31392094/viewspace-2149577/

  10. IEEEXtreme 9.0 - Digit Fun!

    博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址 Xtreme 9.0 - Digit Fun! 题目来源:第9届IEEE极限编程大赛第1题 Recurrence relations ...