SGU 205. Quantization Problem
205. Quantization Problem
time limit per test: 0.25 sec.
memory limit per test: 65536 KB
input: standard
output: standard
When entering some analog data into a computer, this information must be quantized. Quantization transforms each measured value x to some other value l(x) selected from the predefined set L of levels. Sometimes to reduce the influence of the levels set to the information, the group of levels sets Li is used. The number of levels sets is usually chosen to be the power of 2.
When using the number of levels sets, some additional information should be used to specify which set was used for each quantization. However, providing this information may be too expensive — the better solution would be to choose more levels and use one set. To avoid the specification of the quantization set, the following technique is used. Suppose that n values \(x_1, x_2, ..., x_n\) are to be quantized and the group of \(m=2^p\) levels sets \(Li, i=0, ..., m-1\); each of size \(s=2^q\) is used to quantize it. After quantization \(x_j\) is replaced with some number \(l_j = in L_{f(j)}\). Instead of sending \(l_j\), its ordinal number in \(L_{f(j)}\) is usually sent, let \(k_j\) be the ordinal number of \(l_j\) in \(L_{f(j)}\) (levels are numbered starting with 0). Take p least significant bits of \(k_j\) and say that the number \(k_j\ \&\ (2^p-1)\) is the number of the levels set that will be used for next quantization, that is \(f(j+1) = k_j\ \&\ (2^p-1)\).
Since the least significant bits of kj are usually distributed quite randomly, the sets used for quantization change often and weakly depend on values of quantized data, thus this technique provides the good way to perform the quantization.
Usually to perform the quantization the closest to the value level of the levels set is chosen. However, using the technique described, sometimes it pays off to choose not the optimal level, but some other one, the ordinal number of which has other least significant bits, thus choosing another levels set for next measure and providing better approximation of quantized values in the future. Let us call the deviation of quantization the value of \(\sum_{j=1}^{n}|xj - lj|\). Your task is given measures and levels sets to choose quantized value for each measure in such a way, that the deviation of quantization is minimal possible.
The first value is always quantized using set L0.
Input
The first line of the input file contains n (1 ≤ n ≤ 1000). The second line contains n integer numbers xi ranging from 1 to 106. The next line contains m and s \((1 ≤ m ≤ 128, m ≤ s ≤ 128)\). Next m lines contain s integer numbers each — levels of the quantization sets given in increasing order for each set, all levels satisfy \(1 ≤ level ≤ 10^6\).
Output
First output the minimal possible deviation of the quantization. Then output n integer numbers in range from 0 to s - 1. For each input value output the number of the level in the corresponding levels set \((k_j)\) used for this number to achieve the quantization required.
Sample test(s)
Input
3
8 8 19
2 4
5 10 15 20
3 7 13 17
Output
5
1 1 3
题意
给出一列长n的数列\(\{S_i\}\)和一个\(m\times s\)的矩阵\(A\)(\(m\le s\)且\(m,s\)都是2的整数次方)。求一列数\(\{K_i\}\),使\(K_0=0\),且 \(\sum_{i=1}^{n}{|A_{K_{i-1} \mod m, K_i}-S_i|}\)最小。
引用与修改自Amber——SGU 提示
看懂题了就是sb题了。
由于在阶段i时对答案产生影响的只有\(K_i\)和\(K_{i-1}\)的取值,显然可以DP做。不妨用f[i][j]表示考虑到第i个数字\(K_i\)取j时的最小值,转移是显然的:f[i][j]=min(f[i-1][k]+A[k%m][j]-S[i]),注意记录路径,然后没了。。就是题意难懂啊。
#include <bits/stdc++.h>
#define rep(_i, _j) for(int _i = 0; _i < _j; ++_i)
const int inf = 0x3f3f3f3f;
typedef long long LL;
typedef double DB;
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1000 + 10;
const int maxm = 128 + 2;
int n, m, s, A[maxm][maxm], f[maxn][maxm], pre[maxn][maxm], S[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("205.in", "r", stdin); freopen("205.out", "w", stdout);
#endif
scanf("%d", &n);
for(int i = 1; i <= n; scanf("%d", &S[i]), ++i); // 大家不要学我这样写。。。
scanf("%d%d", &m, &s);
rep(i, m) rep(j, s) scanf("%d", &A[i][j]);
memset(f, INF, sizeof f);
f[0][0] = 0;
for(int i = 1; i <= n; ++i) {
for(int j = 0; j < s; ++j) {
if(i == 1) {
f[i][j] = min(f[i][j], f[i - 1][0] + abs(A[0][j] - S[i]));
pre[i][j] = 0;
continue;
}
for(int k = 0; k < s; ++k) {
int tmp = f[i - 1][k] + abs(A[k % m][j] - S[i]);
if(tmp < f[i][j]) {
pre[i][j] = k;
f[i][j] = tmp;
}
}
}
}
int ans = INF, rec;
for(int i = 0; i < s; ++i) {
if(f[n][i] < ans) {
ans = f[n][i];
rec = i;
}
}
printf("%d\n", ans);
vector<int> res;
int i = n;
while(i != 0) {
res.push_back(rec);
rec = pre[i--][rec];
}
printf("%d", res[res.size() - 1]);
for(int i = res.size() - 2; 0 <= i; --i) {
printf(" %d", res[i]);
}
puts("");
return 0;
}
SGU 205. Quantization Problem的更多相关文章
- 找规律 SGU 107 987654321 problem
题目地址:http://acm.sgu.ru/problem.php?contest=0&problem=107 /* 题意:n位数的平方的后面几位为987654321的个数 尼玛,我看描述这 ...
- acdream 1222 Quantization Problem [dp]
称号:acdream 1222 Quantization Problem 题意:给出一个序列 a ,然后给出一个 n * m 的矩阵,让你从这个矩阵中选出一个序列k,使得sum(abs(ki - ai ...
- SGU 107 987654321 problem【找规律】
题目链接: http://acm.sgu.ru/problem.php?contest=0&problem=107 题意: 平方后几位为987654321的n位数有多少个 分析: 虽然说是水题 ...
- SGU 403 Scientific Problem
403. Scientific Problem Time limit per test: 0.25 second(s)Memory limit: 65536 kilobytes input: stan ...
- 数论 - SGU 107 987654321 problem
987654321 problem Problem's Link Mean: 略 analyse: 这道题目是道简单题. 不过的确要好好想一下: 通过简单的搜索可以知道,在N<9时答案一定为0, ...
- SGU - 403 - Scientific Problem (水)
403. Scientific Problem Time limit per test: 0.25 second(s) Memory limit: 65536 kilobytes input: sta ...
- sgu 107 987654321 problem
其实挺水的,因为两个数平方,只有固定的后面几位数会影响到最后结果的后面几位数.也就是说,如果想在平方之后尾数为987654321,那么就有固定的几个尾数在平方后会是这个数,打个表,发现 10^8 内 ...
- 数论 - SGU 105 DIV3
SGU 105-DIV 3 Problem's Link Mean: 定义这样一种数列:1,12,123.. 给出一个n,求这个数列中能被3整除的数的个数. analyse: 这道题可以用分析的方法解 ...
- SGU 乱搞日志
SGU 100 A+B :太神不会 SGU 101 Domino: 题目大意:有N张骨牌,两张骨牌有两面有0到6的数字,能相连当且仅当前后数字相同,问能否有将N张骨牌连接的方案?思路:裸的欧拉回路,注 ...
随机推荐
- Hdu3022 Sum of Digits
Sum of Digits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tot ...
- C++并发编程 等待与唤醒
C++并发编程 等待与唤醒 条件变量 条件变量, 包括(std::condition_variable 和 std::condition_variable_any) 定义在 condition_var ...
- python 字符串前缀u, r, b小结
http://note.youdao.com/noteshare?id=a0da9c2d044d270fa8cb162b932c47e8
- K8S Link
https://www.cnblogs.com/linuxk/p/9783510.html https://www.cnblogs.com/fengzhihai/p/9851470.html
- 配置JNDI数据源
配置JNDI数据源: 在MATE-INF中新建一个context.xml <?xml version="1.0" encoding="UTF-8"?> ...
- java-压缩文件成zip文件(多文件/单文件/多目录/单目录/无目录),用于下载
本博客是自己在学习和工作途中的积累与总结,仅供自己参考,也欢迎大家转载,转载时请注明出处. http://www.cnblogs.com/king-xg/p/6424788.html 上代码: pac ...
- Vue.js随笔一(Webpack + Vue.js开发准备,含VNM、NPM、Node、Webpack等相关工具)
想入门工具是必须的,这一章将向大家带来vue.js相关的程序安装步骤. ①首先你需要有一个NVM(一个非常好用的Node版本管理器): 1.NVM下载地址:https://github.com/cor ...
- UndertowServer+SpringMVC+Thymeleaf模板引擎构建轻量级的web项目
这两周需要写一个页面来请求另一个服务中的接口,服务器采用了超轻量级的undertow,模板引擎采用的是Thymeleaf,在寻找页面资源位置这个地方难住了我.下面分享一下,这方面的代码. Spring ...
- 字符串hash的学习部分 可以算是模板?
资料来自于http://www.bilibili.com/video/av7230433/ 定义这个字符串为s ①单hash hash[i] = (hash[i - 1] * p + idx(s[i] ...
- Linux下如何强制中断一个程序的执行?
CTRL + C 中断 CTRL + Z 暂时放到后台 CTRL + D 保存退出