$
Ans(l,r)=ans(r)-ans(l-1)
\\
ans(n)=\sum\limits_{i=1}^n
\sum\limits_{j=1}^i
\frac{j}{gcd(i,j)}
\\=
\sum\limits_{g=1}^n
\sum\limits_{i=1}^{n/g}
\sum\limits_{j=1}^n
j\cdot [gcd(i,j)=1]
\\=
\sum\limits_{g=1}^n
\sum\limits_{i=1}^{n/g}
\sum\limits_{j=1}^n
j\sum\limits_{d|i\wedge d|j}\mu(d)
\\=
\sum\limits_{g=1}^n
\sum\limits_{d=1}^{n/g}
\mu(d)d\sum\limits_{i=1}^{n/gd}
\sum\limits_{j=1}^n
j
\\=
\sum\limits_{t=1}^n
\sum\limits_{d|t}\mu(d)d
\sum\limits_{i=1}^{n/t}
\sum\limits_{j=1}^n
j
\\=
\sum\limits_{t=1}^n
a(t)S(n/t)
,\;
a(n)=\sum\limits_{d|n}\mu(d)d
,\;
S(n)=n(n+1)(n+2)/6=n(n+1)(2n+1)/12+n(n+1)/4
\\
A(n)=\sum\limits_{i=1}^na(i)
\\
A(n)=n-\sum\limits_{i=2}^nA(n/i)i
$

时间复杂度$O(n^{2/3})$

#include<bits/stdc++.h>
typedef unsigned long long i64;
const int P=1e9+,I2=(P+)/,I6=(P+)/;
int B;
const int M=3e6+;
int ps[M/],pp=;
bool np[M];
int va[M],vA[],n0;
int S3(int n){
return i64(n)*(n+)%P*(n+)%P;
}
int A(int n){
if(n<=B)return va[n];
int&w=vA[n0/n];
if(w)return w;
i64 s=;
for(int l=,r,c;l<n;l=r){
r=n/(c=n/(l+));
if((s+=i64(r+l+)*(r-l)%P*A(c))>i64(1.5e19))s%=P;
}
s=s%P*I2%P;
return w=(n-s+P)%P;
}
int F(int n){
i64 s=;
for(int l=,r,c,s0=,s1;l<n;l=r){
r=n/(c=n/(l+));
s1=A(r);
if((s+=i64(s1-s0+P)*S3(c))>i64(1.5e19))s%=P;
s0=s1;
}
return s%P*I6%P;
}
void pre(){
va[]=;
for(int i=;i<=B;++i){
if(!np[i]){
ps[pp++]=i;
va[i]=P+-i;
}
for(int j=,k;j<pp&&(k=i*ps[j])<=B;++j){
np[k]=;
if(i%ps[j]){
va[k]=va[i]*i64(P+-ps[j])%P;
}else{
va[k]=va[i];
break;
}
}
}
for(int i=;i<=B;++i)if((va[i]+=va[i-])>=P)va[i]-=P;
}
int cal(int n){
n0=n;
memset(vA,,sizeof(vA));
return F(n);
}
int main(){
int l,r;
scanf("%d%d",&l,&r);
B=pow(r,./.)*2.5;
pre();
printf("%d\n",(cal(r)-cal(l-)+P)%P);
return ;
}

51nod1227 平均最小公倍数的更多相关文章

  1. [51nod1227]平均最小公倍数(莫比乌斯反演+杜教筛)

    题意 求 $\sum_{i=a}^b \sum_{j=1}^i \frac{lcm(i,j)}{i}$. 分析 只需要求出前缀和, $$\begin{aligned}\sum_{i=1}^n \sum ...

  2. 51NOD 1227 平均最小公倍数 [杜教筛]

    1227 平均最小公倍数 题意:求\(\frac{1}{n} \sum_{i=1}^n lcm(n,i)\) 和的弱化版? \[ ans = \frac{1}{2}((\sum_{i=1}^n \su ...

  3. 51 nod 1227 平均最小公倍数

    原题链接 Lcm(a,b)表示a和b的最小公倍数,A(n)表示Lcm(n,i)的平均数(1 <= i <= n), 例如:A(4) = (Lcm(1,4) + Lcm(2,4) + Lcm ...

  4. 【51nod】1227 平均最小公倍数

    题解 这个故事告诉们数论函数不要往分式上跑,你推不出来 好久没推式子了这么明显的转化我都忘了= = 首先\(A(n) = \frac{1}{n} \sum_{i = 1}^{n} \frac{i * ...

  5. 51NOD 1227:平均最小公倍数——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1227 懒得打公式了,看这位的吧:https://blog.csdn.ne ...

  6. 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  7. 51nod-1227-平均最小公倍数

    题意 定义 \(n\) 的平均最小公倍数: \[ A(n)=\frac{1}{n}\sum _{i=1}^n\text{lcm}(n,i) \] 求 \[ \sum _{i=L}^RA(i) \] \ ...

  8. NOIp2018停课刷题记录

    Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...

  9. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

随机推荐

  1. CentOS 6.8 配置防火墙,开放8080端口

    打开配置文件 sudo vim /etc/sysconfig/iptables 按下a,进入编辑 加入这一行 -A INPUT -m state --state NEW -m tcp -p tcp - ...

  2. Docker 部署应用过程记录

    Kibana直接部署到centos中,老是没有任何征兆退出,今天将他移动到docker中部署,以下是部署的过程,做个记录防止忘记 1.安装Docker # yum install docker 2.启 ...

  3. [LeetCode&Python] Problem 101. Symmetric Tree

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  4. Vue常见问题解决办法(一)ESLint检查报错

    vue.js报错“Do not use 'new' for side effects“(main.js里)解决办法 ESLint工具检查代码质量,main.js里的原代码是这样的: new Vue({ ...

  5. css的各种动画

    /*淡入*/@keyframes fade-in { 0% { opacity: 0; } /*初始状态 透明度为0*/ 40% { opacity: 0; } /*过渡状态 透明度为0*/ 100% ...

  6. 导入到eclipse里的工程挺大的,然后就一直报: An internal error occurred during: "Building workspace". GC overhead limit exceeded 这个错误。

    解决方法: 原因是Eclipse默认配置内存太小需要更改Eclipse安装文件夹下的eclipse.ini文件. Eclipse.ini默认文件如下: 修改如下: -Xms1024m -Xmx2048 ...

  7. PHP全局变量,超全局变量

    php中有许多超全局变量,这意味着它们在一个脚本的全部作用域中都可用.在函数或方法中无需执行 global $variable; 就可以访问它们. 这些超全局变量是: $GLOBALS    引用全局 ...

  8. javascript之网页跑马灯

    ---恢复内容开始--- <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  9. 使用CUPS打印服务

    目录 1. 测试环境 2 2. CUPS介绍 3 2.1 CUPS的配置文件 3 2.1.1 cupsd.conf 3 2.1.2 cups-files.conf 3 2.1.3 printcap 3 ...

  10. vue2上传图片到OSS

    第一步:安装阿里云OSS <!-- 引入在线资源 --> <script src="http://gosspublic.alicdn.com/aliyun-oss-sdk- ...