SVM,中文名叫支持向量机。

在深度学习出现以前,它是数据挖掘的宠儿;

SVM具有十分完整的数据理论证明,但同时理论也相当复杂。

初识SVM 

同其他分类算法一样,SVM分类也是寻找合适的决策边界,为方便理解,以二分类为例。

假设存在二分类样本,我们一定可以找到一个超平面将类别分开,但是通常会存在很多这样的超平面。

那取哪个呢?

直观感受

直观来看,应该取中间那条粗线,因为这条线对样本的“容忍性”最好,也就是说样本发生微小变化,不会影响分类结果,但是其他细线,如果样本发生微小变化,都会使得分类结果发生变化,也就是说粗线作为决策边界,其鲁棒性最好。

数学解释

从直观上看,取粗线为宜,但是这条粗线有很多的平行线,都可以实现分类,那么怎么取呢?

我们把这条粗线向两边平移,直至粗线和两边离他最近的样本重合,此时生成了2个新的超平面,记为 b11,b12,然后我们可以把之前的粗线移动到b11和b12的中间,确保粗线到b11和b12的距离相等

假设我们有两条粗线B1,B2,分别完成上述操作,

b11和b12之间的距离,叫做B1这条决策边界的边际(margin),也有叫“间隔”,记为d,当然也有把b11和B1的距离叫边际的,无所谓,不影响理论

显然拥有更大的边际的决策边界泛化能力更强

与b11和b12相交的样本点叫支持向量

数学建模

如何找到具有最大边际的决策边界呢?

假设这个超平面为 wx+b=0

超平面上取两点x1,x2,则

wx1+b=0

wx2+b=0

w(x1-x2)=0,故w与x1-x2垂直,即w为超平面的法向量。

超平面外任意点到平面的距离为

此时把支持向量带入上式,即可得到

d=2r,带有绝对值,不好处理。

解释

1. 上图把超平面的表达形式稍微变化了一下,而且进行了一系列的推导

2. 其实最开始也有解释,如果向两侧平移不同距离,那么应该先调整决策边界到两个新平面的中间,此时3个平面的wb都要做调整。

3. 上图是许多资料未讲明的地方

4. 上图是个变换过程,如果二分类的标签不是-1 1,也可以变换成-1 1

上图的结论是

假设是二分类,那么决策边界 wx+b=0 向两侧平移1,可得

等号成立的条件就是支持向量,此时 |wx+b|=1,那么

这就是边际d。

欲使边际最大,就是 maxd

注意,在训练过程中,我们使用的是全部样本,而不单是支持向量,而全部样本存在约束

综合表示就是 y(wx+b)>1,

那么目标为

最大转换为最小,方便计算

w加了平方,也是方便计算,不影响,w最小,w平方也就最小

以上就是SVM的基础理论。

拉格朗日乘子与对偶问题

其实上面的目标函数已经是个凸函数,可以用梯度下降等优化算法来求解,但是SVM使用了另一种优化算法,即拉格朗日对偶函数,

这部分比较麻烦,如果你不是专门研究SVM,没必要太纠结这块,因为即使你弄明白了,过一段时间就会忘记。

核函数

上面讲到用超平面来划分样本,但现实中很多问题是线性不可分的,此时不存在可划分类别的超平面。

对于这样的问题,需要将样本从原始空间映射到一个更高维的空间,使得样本在新的特征空间线性可分。

如果原始空间有限,那么一定存在一个高维空间使得样本可分。

这种映射其实就是一个函数,我们称之为核函数。

常用的核函数有

 

一般情况下会先用高斯核试试,但经验告诉我们,文本一般使用线性核。

核函数的计算也是可以简化的

软间隔与正则化

SVM总是在寻找超平面使得样本能够完全被分开,但是由于现实中数据杂质很多,完全分开很容易造成过拟合。

缓解这个问题的思路就是允许部分样本被错误划分,于是提出了“软间隔”的概念(相对有“硬间隔”的概念)

可以看到红色样本被错误划分

此时的红色样本实际为1(-1),预测为-1(1),已经不满足 y(wx+b)>1的约束条件,

那对应我们的目标函数怎么改呢?去掉约束吗?显然不能

在分类时,我们虽然容忍部分样本被错误划分,但是我们希望被错误划分的样本越少越好,也就是说我们希望大部分样本仍然满足约束条件。

目标函数可改为

C是个>0的常数,也就是正则项系数,这里叫容忍系数

l0/1是“0/1损失函数”

当样本被错误分类时,y(wx+b)<0,y(wx+b)-1<0,l0/1=1,

当样本被正确分类时,l0/1=0

要使目标函数最小,就要使后面那部分最小,然而当样本被错误划分时,后面为1,如果C很大,那么后面那部分就很大,显然不符合我们的目标,所以需要1尽可能少,也就是错误划分尽可能少。

当C无穷大时,就是不能错误划分,后面那部分是0,目标函数最小,也就是“硬间隔”。

所以C越大,模型越“精确”

由于l0/1函数非凸,非连续,数学性质不太好,所以要用其他函数来替代它,称为“替代损失”

三种常用的替代损失函数

总结

SVM的理论十分复杂,上面只是介绍了冰山一角,有助于你在实际项目中完成调参工作。

参考资料:

周志华 《机器学习》

简单理解 SVM的更多相关文章

  1. 支持向量机通俗导论(理解SVM的三层境界)

    原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算 ...

  2. 支持向量机通俗导论(理解SVM的三层境地)

    支持向量机通俗导论(理解SVM的三层境地) 作者:July :致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector ...

  3. 支持向量机通俗导论(理解SVM的三层境界)(ZT)

    支持向量机通俗导论(理解SVM的三层境界) 原文:http://blog.csdn.net/v_JULY_v/article/details/7624837 作者:July .致谢:pluskid.白 ...

  4. 支持向量机通俗导论(理解SVM的三层境界)【非原创】

    支持向量机通俗导论(理解SVM的三层境界) 作者:July :致谢:pluskid.白石.JerryLead. 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vecto ...

  5. 机器学习之深入理解SVM

    在浏览本篇博客之前,最好先查看一下我写的还有一篇文章机器学习之初识SVM(点击可查阅哦).这样能够更好地为了结以下内容做铺垫! 支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机.线性支持向 ...

  6. 支持向量机通俗导论(理解SVM的三层境界) by v_JULY_v

    支持向量机通俗导论(理解SVM的三层境界) 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去 ...

  7. 支持向量机通俗导论(理解SVM的三层境界)[转]

    作者:July .致谢:pluskid.白石.JerryLead.说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月.声明:本文于201 ...

  8. 我是这样理解--SVM,不需要繁杂公式的那种!(附代码)

    1. 讲讲SVM 1.1 一个关于SVM的童话故事 支持向量机(Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍.关 ...

  9. git的简单理解及基础操作命令

    前端小白一枚,最近开始使用git,于是花了2天看了廖雪峰的git教程(偏实践,对于学习git的基础操作很有帮助哦),也在看<git版本控制管理>这本书(偏理论,内容完善,很不错),针对所学 ...

随机推荐

  1. allure--下的各装饰器的翻译及自己的总结

    翻译图-快捷键 红色字体感觉用的会比较多,起码现在感觉应该是比其他的多一点 lable应该没有什么特殊的用法,只是对下面方法的一个汇总(或者可以这么说,下面的方法是lable更具体的实现) sever ...

  2. 3 - Two Pointers Algorithm

    5. Kth Largest Element (quick sort的变种) https://www.lintcode.com/problem/kth-largest-element/descript ...

  3. [经验]怎么删除“通过QQ/TIM发送到”右键菜单

      首先打开QQ主面板上的系统设置   选择[基本设置]-[文件管理]菜单,并将如图所示的选项去掉勾选即可

  4. Apache Hadoop学习笔记一

    官网:http://hadoop.apache.org/ 1 什么是Hadoop? Apache™Hadoop®项目开发了用于可靠,可扩展的分布式计算的开源软件. Apache Hadoop软件库是一 ...

  5. leetcode刷题——一些算法技巧总结1.0

    运算符优先级,简单记就是:! > 算术运算符 > 关系运算符 > && > || > 赋值运算符 把数字取反,可以作为一种标记 pythonlast = ...

  6. Matlab的BP神经网络工具箱及其在函数逼近中的应用

    1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...

  7. 【XAF问题】如何判断这个对象的进出类型

    一.问题 1. 如何判断这个对象的进出类型 二.思路 第一次进过的时候,存个字段在对象的字段,例如已经过了就给他true,再回来就是false,再过去就true 三.方法 在 A_rfidperson ...

  8. MemSQL Start[c]UP 2.0 - Round 1E. Three strings

    题意:给3个字符串,问从1到min(l1,l2,l3)的长度的子串,找到从该位置长度为l,三个子串相同的三元组的个数 题解:把3个子串用分隔符串起来.然后分开统计每个节点在三个串中出现次数.最后乘起来 ...

  9. Apache 如何设置默认首页文档?

    在你安装后的Apache目录下,有一个conf目录,在这个目录里,有一个"httpd.conf"文件.我们要做的,就是修改这个文件. 在这个文件里,凡是以"#" ...

  10. yml配置文件读取出错 Exception in thread "main" while scanning for the next token found character '\t(TAB)'

    这几天在学习springboot的微服务项目,在配置文件方面也想尝试下新的yml配置,就想把原来项目properties写的文件转换成yml试一下(老项目是之前检出在了eclipse里面),结果写好了 ...